MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn Structured version   Visualization version   GIF version

Theorem dfimafn 6960
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem dfimafn
StepHypRef Expression
1 dfima2 6066 . 2 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
2 ssel 3970 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 funbrfvb 6951 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
43ex 411 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
52, 4syl9r 78 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
65imp31 416 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76rexbidva 3166 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
87abbidv 2794 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦})
91, 8eqtr4id 2784 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  wss 3944   class class class wbr 5149  dom cdm 5678  cima 5681  Fun wfun 6543  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557
This theorem is referenced by:  dfimafn2  6961  fvelimab  6970  cshimadifsn  14816  cshimadifsn0  14817  ushgredgedg  29114  ushgredgedgloop  29116  curry2ima  32570  intimafv  32572  fnrelpredd  34843  poimirlem26  37250  poimirlem27  37251  f1oresf1o  46808  imasetpreimafvbijlemfo  46882
  Copyright terms: Public domain W3C validator