| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimass3 | Structured version Visualization version GIF version | ||
| Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6991 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass3 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 6891 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | ssel 3931 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
| 3 | fvimacnv 6991 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) | |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵)))) |
| 5 | 2, 4 | syl9r 78 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))))) |
| 6 | 5 | imp31 417 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 7 | 6 | ralbidva 3150 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 8 | 1, 7 | bitrd 279 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 9 | dfss3 3926 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵)) | |
| 10 | 8, 9 | bitr4di 289 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: funimass5 6993 funconstss 6994 fvimacnvALT 6995 r0weon 9925 iscnp3 23147 cnpnei 23167 cnclsi 23175 cncls 23177 cncnp 23183 1stccnp 23365 txcnpi 23511 xkoco2cn 23561 xkococnlem 23562 basqtop 23614 kqnrmlem1 23646 kqnrmlem2 23647 reghmph 23696 nrmhmph 23697 elfm3 23853 rnelfm 23856 symgtgp 24009 tgpconncompeqg 24015 eltsms 24036 ucnprima 24185 plyco0 26113 plyeq0 26132 xrlimcnp 26894 rinvf1o 32587 xppreima 32602 rhmpreimacnlem 33850 cvmliftmolem1 35253 cvmlift2lem9 35283 cvmlift3lem6 35296 mclsppslem 35555 |
| Copyright terms: Public domain | W3C validator |