![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass3 | Structured version Visualization version GIF version |
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6595 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass3 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 6507 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | ssel 3814 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
3 | fvimacnv 6595 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) | |
4 | 3 | ex 403 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵)))) |
5 | 2, 4 | syl9r 78 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))))) |
6 | 5 | imp31 410 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
7 | 6 | ralbidva 3166 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
8 | 1, 7 | bitrd 271 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
9 | dfss3 3809 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵)) | |
10 | 8, 9 | syl6bbr 281 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2106 ∀wral 3089 ⊆ wss 3791 ◡ccnv 5354 dom cdm 5355 “ cima 5358 Fun wfun 6129 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 |
This theorem is referenced by: funimass5 6597 funconstss 6598 fvimacnvALT 6599 fimacnv 6611 r0weon 9168 iscnp3 21456 cnpnei 21476 cnclsi 21484 cncls 21486 cncnp 21492 1stccnp 21674 txcnpi 21820 xkoco2cn 21870 xkococnlem 21871 basqtop 21923 kqnrmlem1 21955 kqnrmlem2 21956 reghmph 22005 nrmhmph 22006 elfm3 22162 rnelfm 22165 symgtgp 22313 tgpconncompeqg 22323 eltsms 22344 ucnprima 22494 plyco0 24385 plyeq0 24404 xrlimcnp 25147 rinvf1o 30011 xppreima 30028 cvmliftmolem1 31876 cvmlift2lem9 31906 cvmlift3lem6 31919 mclsppslem 32093 |
Copyright terms: Public domain | W3C validator |