MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass3 Structured version   Visualization version   GIF version

Theorem funimass3 7087
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 7086 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funimass4 6986 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssel 4002 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 fvimacnv 7086 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
43ex 412 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵))))
52, 4syl9r 78 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))))
65imp31 417 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
76ralbidva 3182 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
81, 7bitrd 279 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
9 dfss3 3997 . 2 (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵))
108, 9bitr4di 289 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wss 3976  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  funimass5  7088  funconstss  7089  fvimacnvALT  7090  fimacnvOLD  7104  r0weon  10081  iscnp3  23273  cnpnei  23293  cnclsi  23301  cncls  23303  cncnp  23309  1stccnp  23491  txcnpi  23637  xkoco2cn  23687  xkococnlem  23688  basqtop  23740  kqnrmlem1  23772  kqnrmlem2  23773  reghmph  23822  nrmhmph  23823  elfm3  23979  rnelfm  23982  symgtgp  24135  tgpconncompeqg  24141  eltsms  24162  ucnprima  24312  plyco0  26251  plyeq0  26270  xrlimcnp  27029  rinvf1o  32649  xppreima  32664  rhmpreimacnlem  33830  cvmliftmolem1  35249  cvmlift2lem9  35279  cvmlift3lem6  35292  mclsppslem  35551
  Copyright terms: Public domain W3C validator