MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass3 Structured version   Visualization version   GIF version

Theorem funimass3 7056
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 7055 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funimass4 6957 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssel 3976 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 fvimacnv 7055 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
43ex 414 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵))))
52, 4syl9r 78 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))))
65imp31 419 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
76ralbidva 3176 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
81, 7bitrd 279 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
9 dfss3 3971 . 2 (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵))
108, 9bitr4di 289 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wss 3949  ccnv 5676  dom cdm 5677  cima 5680  Fun wfun 6538  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  funimass5  7057  funconstss  7058  fvimacnvALT  7059  fimacnvOLD  7073  r0weon  10007  iscnp3  22748  cnpnei  22768  cnclsi  22776  cncls  22778  cncnp  22784  1stccnp  22966  txcnpi  23112  xkoco2cn  23162  xkococnlem  23163  basqtop  23215  kqnrmlem1  23247  kqnrmlem2  23248  reghmph  23297  nrmhmph  23298  elfm3  23454  rnelfm  23457  symgtgp  23610  tgpconncompeqg  23616  eltsms  23637  ucnprima  23787  plyco0  25706  plyeq0  25725  xrlimcnp  26473  rinvf1o  31854  xppreima  31871  rhmpreimacnlem  32864  cvmliftmolem1  34272  cvmlift2lem9  34302  cvmlift3lem6  34315  mclsppslem  34574
  Copyright terms: Public domain W3C validator