![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass3 | Structured version Visualization version GIF version |
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 7053 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass3 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 6955 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | ssel 3974 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
3 | fvimacnv 7053 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) | |
4 | 3 | ex 411 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵)))) |
5 | 2, 4 | syl9r 78 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))))) |
6 | 5 | imp31 416 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
7 | 6 | ralbidva 3173 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
8 | 1, 7 | bitrd 278 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
9 | dfss3 3969 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵)) | |
10 | 8, 9 | bitr4di 288 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 ⊆ wss 3947 ◡ccnv 5674 dom cdm 5675 “ cima 5678 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: funimass5 7055 funconstss 7056 fvimacnvALT 7057 fimacnvOLD 7071 r0weon 10009 iscnp3 22968 cnpnei 22988 cnclsi 22996 cncls 22998 cncnp 23004 1stccnp 23186 txcnpi 23332 xkoco2cn 23382 xkococnlem 23383 basqtop 23435 kqnrmlem1 23467 kqnrmlem2 23468 reghmph 23517 nrmhmph 23518 elfm3 23674 rnelfm 23677 symgtgp 23830 tgpconncompeqg 23836 eltsms 23857 ucnprima 24007 plyco0 25941 plyeq0 25960 xrlimcnp 26709 rinvf1o 32121 xppreima 32138 rhmpreimacnlem 33162 cvmliftmolem1 34570 cvmlift2lem9 34600 cvmlift3lem6 34613 mclsppslem 34872 |
Copyright terms: Public domain | W3C validator |