| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimass3 | Structured version Visualization version GIF version | ||
| Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 7025 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass3 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 6925 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | ssel 3940 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
| 3 | fvimacnv 7025 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) | |
| 4 | 3 | ex 412 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵)))) |
| 5 | 2, 4 | syl9r 78 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))))) |
| 6 | 5 | imp31 417 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 7 | 6 | ralbidva 3154 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 8 | 1, 7 | bitrd 279 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 9 | dfss3 3935 | . 2 ⊢ (𝐴 ⊆ (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (◡𝐹 “ 𝐵)) | |
| 10 | 8, 9 | bitr4di 289 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: funimass5 7027 funconstss 7028 fvimacnvALT 7029 r0weon 9965 iscnp3 23131 cnpnei 23151 cnclsi 23159 cncls 23161 cncnp 23167 1stccnp 23349 txcnpi 23495 xkoco2cn 23545 xkococnlem 23546 basqtop 23598 kqnrmlem1 23630 kqnrmlem2 23631 reghmph 23680 nrmhmph 23681 elfm3 23837 rnelfm 23840 symgtgp 23993 tgpconncompeqg 23999 eltsms 24020 ucnprima 24169 plyco0 26097 plyeq0 26116 xrlimcnp 26878 rinvf1o 32554 xppreima 32569 rhmpreimacnlem 33874 cvmliftmolem1 35268 cvmlift2lem9 35298 cvmlift3lem6 35311 mclsppslem 35570 |
| Copyright terms: Public domain | W3C validator |