![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaimafn | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function, analogous to dfimafn 6953. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfaimafn | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima2 6060 | . 2 ⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} | |
2 | ssel 3974 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
3 | funbrafvb 46162 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
4 | 3 | ex 411 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
5 | 2, 4 | syl9r 78 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
6 | 5 | imp31 416 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
7 | 6 | rexbidva 3174 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
8 | 7 | abbidv 2799 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦}) |
9 | 1, 8 | eqtr4id 2789 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹'''𝑥) = 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ∃wrex 3068 ⊆ wss 3947 class class class wbr 5147 dom cdm 5675 “ cima 5678 Fun wfun 6536 '''cafv 46123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-aiota 46091 df-dfat 46125 df-afv 46126 |
This theorem is referenced by: dfaimafn2 46172 |
Copyright terms: Public domain | W3C validator |