| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symggrp | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| Ref | Expression |
|---|---|
| symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symggrp | ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐺)) | |
| 2 | eqidd 2736 | . 2 ⊢ (𝐴 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝐺)) | |
| 3 | symggrp.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 3, 4, 5 | symgcl 19366 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 8 | 3, 4, 5 | symgcl 19366 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) ∈ (Base‘𝐺)) |
| 9 | 3, 4, 5 | symgov 19365 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
| 10 | 8, 9 | symggrplem 18862 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 12 | 3 | idresperm 19367 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 13 | 3, 4, 5 | symgov 19365 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 15 | 3, 4 | elsymgbas 19355 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
| 16 | 15 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴–1-1-onto→𝐴) |
| 17 | f1of 6818 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) | |
| 18 | fcoi2 6753 | . . . 4 ⊢ (𝑥:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) |
| 20 | 14, 19 | eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = 𝑥) |
| 21 | f1ocnv 6830 | . . . . 5 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴) | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 23 | 3, 4 | elsymgbas 19355 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡𝑥 ∈ (Base‘𝐺) ↔ ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 24 | 22, 15, 23 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) → ◡𝑥 ∈ (Base‘𝐺))) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ◡𝑥 ∈ (Base‘𝐺)) |
| 26 | 3, 4, 5 | symgov 19365 | . . . 4 ⊢ ((◡𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 27 | 25, 26 | sylancom 588 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 28 | f1ococnv1 6847 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) | |
| 29 | 16, 28 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) |
| 30 | 27, 29 | eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = ( I ↾ 𝐴)) |
| 31 | 1, 2, 7, 11, 12, 20, 25, 30 | isgrpd 18941 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 I cid 5547 ◡ccnv 5653 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 SymGrpcsymg 19350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-tset 17290 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-efmnd 18847 df-grp 18919 df-symg 19351 |
| This theorem is referenced by: symginv 19383 symgsubmefmndALT 19384 galactghm 19385 symgga 19388 pgrpsubgsymgbi 19389 pgrpsubgsymg 19390 idressubgsymg 19391 gsumccatsymgsn 19407 symgsssg 19448 symgfisg 19449 symggen 19451 symgtrinv 19453 psgnunilem5 19475 psgnunilem2 19476 psgnuni 19480 psgneldm2 19485 psgnfitr 19498 psgnghm 21540 zrhpsgninv 21545 evpmodpmf1o 21556 mdetleib2 22526 mdetdiag 22537 mdetralt 22546 mdetunilem7 22556 symgtgp 24044 symgfcoeu 33093 symgsubg 33098 cyc3co2 33151 cyc3genpmlem 33162 cyc3genpm 33163 cycpmconjs 33167 cyc3conja 33168 madjusmdetlem3 33860 madjusmdetlem4 33861 pgrple2abl 48340 |
| Copyright terms: Public domain | W3C validator |