MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggrp Structured version   Visualization version   GIF version

Theorem symggrp 18289
Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symggrp (𝐴𝑉𝐺 ∈ Grp)

Proof of Theorem symggrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2779 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2779 . 2 (𝐴𝑉 → (+g𝐺) = (+g𝐺))
3 symggrp.1 . . . 4 𝐺 = (SymGrp‘𝐴)
4 eqid 2778 . . . 4 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2778 . . . 4 (+g𝐺) = (+g𝐺)
63, 4, 5symgcl 18280 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
763adant1 1110 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
8 coass 5957 . . . 4 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
9 simpr1 1174 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
10 simpr2 1175 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
113, 4, 5symgov 18279 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
129, 10, 11syl2anc 576 . . . . 5 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥𝑦))
1312coeq1d 5582 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘ 𝑧) = ((𝑥𝑦) ∘ 𝑧))
14 simpr3 1176 . . . . . 6 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
153, 4, 5symgov 18279 . . . . . 6 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
1610, 14, 15syl2anc 576 . . . . 5 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦𝑧))
1716coeq2d 5583 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥 ∘ (𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
188, 13, 173eqtr4a 2840 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
199, 10, 6syl2anc 576 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
203, 4, 5symgov 18279 . . . 4 (((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘ 𝑧))
2119, 14, 20syl2anc 576 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘ 𝑧))
223, 4, 5symgcl 18280 . . . . 5 ((𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2310, 14, 22syl2anc 576 . . . 4 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
243, 4, 5symgov 18279 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
259, 23, 24syl2anc 576 . . 3 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥 ∘ (𝑦(+g𝐺)𝑧)))
2618, 21, 253eqtr4d 2824 . 2 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
27 f1oi 6481 . . 3 ( I ↾ 𝐴):𝐴1-1-onto𝐴
283, 4elsymgbas 18271 . . 3 (𝐴𝑉 → (( I ↾ 𝐴) ∈ (Base‘𝐺) ↔ ( I ↾ 𝐴):𝐴1-1-onto𝐴))
2927, 28mpbiri 250 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
303, 4, 5symgov 18279 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
3129, 30sylan 572 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
323, 4elsymgbas 18271 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
3332biimpa 469 . . . 4 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
34 f1of 6444 . . . 4 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
35 fcoi2 6382 . . . 4 (𝑥:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
3633, 34, 353syl 18 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
3731, 36eqtrd 2814 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = 𝑥)
38 f1ocnv 6456 . . . . 5 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
3938a1i 11 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
403, 4elsymgbas 18271 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
4139, 32, 403imtr4d 286 . . 3 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺)))
4241imp 398 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
433, 4, 5symgov 18279 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
4442, 43sylancom 579 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
45 f1ococnv1 6472 . . . 4 (𝑥:𝐴1-1-onto𝐴 → (𝑥𝑥) = ( I ↾ 𝐴))
4633, 45syl 17 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥𝑥) = ( I ↾ 𝐴))
4744, 46eqtrd 2814 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = ( I ↾ 𝐴))
481, 2, 7, 26, 29, 37, 42, 47isgrpd 17913 1 (𝐴𝑉𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   I cid 5311  ccnv 5406  cres 5409  ccom 5411  wf 6184  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  Basecbs 16339  +gcplusg 16421  Grpcgrp 17891  SymGrpcsymg 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-plusg 16434  df-tset 16440  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-grp 17894  df-symg 18267
This theorem is referenced by:  symgid  18290  symginv  18291  galactghm  18292  symgga  18295  pgrpsubgsymgbi  18296  pgrpsubgsymg  18297  idressubgsymg  18299  gsumccatsymgsn  18315  symgsssg  18356  symgfisg  18357  symggen  18359  symgtrinv  18361  psgnunilem5  18383  psgnunilem5OLD  18384  psgnunilem2  18385  psgnuni  18389  psgneldm2  18394  psgnfitr  18407  psgnghm  20426  zrhpsgninv  20431  evpmodpmf1o  20442  mdetleib2  20901  mdetdiag  20912  mdetralt  20921  mdetunilem7  20931  symgtgp  22413  cyc3co2  30468  symgfcoeu  30693  madjusmdetlem3  30742  madjusmdetlem4  30743  pgrple2abl  43785
  Copyright terms: Public domain W3C validator