| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symggrp | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| Ref | Expression |
|---|---|
| symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symggrp | ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐺)) | |
| 2 | eqidd 2731 | . 2 ⊢ (𝐴 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝐺)) | |
| 3 | symggrp.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 3, 4, 5 | symgcl 19322 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 8 | 3, 4, 5 | symgcl 19322 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) ∈ (Base‘𝐺)) |
| 9 | 3, 4, 5 | symgov 19321 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
| 10 | 8, 9 | symggrplem 18818 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 12 | 3 | idresperm 19323 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 13 | 3, 4, 5 | symgov 19321 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 15 | 3, 4 | elsymgbas 19311 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
| 16 | 15 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴–1-1-onto→𝐴) |
| 17 | f1of 6803 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) | |
| 18 | fcoi2 6738 | . . . 4 ⊢ (𝑥:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) |
| 20 | 14, 19 | eqtrd 2765 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = 𝑥) |
| 21 | f1ocnv 6815 | . . . . 5 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴) | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 23 | 3, 4 | elsymgbas 19311 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡𝑥 ∈ (Base‘𝐺) ↔ ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 24 | 22, 15, 23 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) → ◡𝑥 ∈ (Base‘𝐺))) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ◡𝑥 ∈ (Base‘𝐺)) |
| 26 | 3, 4, 5 | symgov 19321 | . . . 4 ⊢ ((◡𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 27 | 25, 26 | sylancom 588 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 28 | f1ococnv1 6832 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) | |
| 29 | 16, 28 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) |
| 30 | 27, 29 | eqtrd 2765 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = ( I ↾ 𝐴)) |
| 31 | 1, 2, 7, 11, 12, 20, 25, 30 | isgrpd 18897 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 I cid 5535 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 SymGrpcsymg 19306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-tset 17246 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-efmnd 18803 df-grp 18875 df-symg 19307 |
| This theorem is referenced by: symginv 19339 symgsubmefmndALT 19340 galactghm 19341 symgga 19344 pgrpsubgsymgbi 19345 pgrpsubgsymg 19346 idressubgsymg 19347 gsumccatsymgsn 19363 symgsssg 19404 symgfisg 19405 symggen 19407 symgtrinv 19409 psgnunilem5 19431 psgnunilem2 19432 psgnuni 19436 psgneldm2 19441 psgnfitr 19454 psgnghm 21496 zrhpsgninv 21501 evpmodpmf1o 21512 mdetleib2 22482 mdetdiag 22493 mdetralt 22502 mdetunilem7 22512 symgtgp 24000 symgfcoeu 33046 symgsubg 33051 cyc3co2 33104 cyc3genpmlem 33115 cyc3genpm 33116 cycpmconjs 33120 cyc3conja 33121 madjusmdetlem3 33826 madjusmdetlem4 33827 pgrple2abl 48357 |
| Copyright terms: Public domain | W3C validator |