MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggrp Structured version   Visualization version   GIF version

Theorem symggrp 19312
Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symggrp (𝐴𝑉𝐺 ∈ Grp)

Proof of Theorem symggrp
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2732 . 2 (𝐴𝑉 → (+g𝐺) = (+g𝐺))
3 symggrp.1 . . . 4 𝐺 = (SymGrp‘𝐴)
4 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
63, 4, 5symgcl 19297 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
763adant1 1130 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
83, 4, 5symgcl 19297 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)𝑔) ∈ (Base‘𝐺))
93, 4, 5symgov 19296 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)𝑔) = (𝑓𝑔))
108, 9symggrplem 18792 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
1110adantl 481 . 2 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
123idresperm 19298 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
133, 4, 5symgov 19296 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
1412, 13sylan 580 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
153, 4elsymgbas 19286 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
1615biimpa 476 . . . 4 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
17 f1of 6763 . . . 4 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
18 fcoi2 6698 . . . 4 (𝑥:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
1916, 17, 183syl 18 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
2014, 19eqtrd 2766 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = 𝑥)
21 f1ocnv 6775 . . . . 5 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
2221a1i 11 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
233, 4elsymgbas 19286 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
2422, 15, 233imtr4d 294 . . 3 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺)))
2524imp 406 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
263, 4, 5symgov 19296 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
2725, 26sylancom 588 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
28 f1ococnv1 6792 . . . 4 (𝑥:𝐴1-1-onto𝐴 → (𝑥𝑥) = ( I ↾ 𝐴))
2916, 28syl 17 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥𝑥) = ( I ↾ 𝐴))
3027, 29eqtrd 2766 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = ( I ↾ 𝐴))
311, 2, 7, 11, 12, 20, 25, 30isgrpd 18871 1 (𝐴𝑉𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   I cid 5508  ccnv 5613  cres 5616  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846  SymGrpcsymg 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-efmnd 18777  df-grp 18849  df-symg 19282
This theorem is referenced by:  symginv  19314  symgsubmefmndALT  19315  galactghm  19316  symgga  19319  pgrpsubgsymgbi  19320  pgrpsubgsymg  19321  idressubgsymg  19322  gsumccatsymgsn  19338  symgsssg  19379  symgfisg  19380  symggen  19382  symgtrinv  19384  psgnunilem5  19406  psgnunilem2  19407  psgnuni  19411  psgneldm2  19416  psgnfitr  19429  psgnghm  21517  zrhpsgninv  21522  evpmodpmf1o  21533  mdetleib2  22503  mdetdiag  22514  mdetralt  22523  mdetunilem7  22533  symgtgp  24021  symgfcoeu  33051  symgsubg  33056  cyc3co2  33109  cyc3genpmlem  33120  cyc3genpm  33121  cycpmconjs  33125  cyc3conja  33126  mplvrpmga  33575  madjusmdetlem3  33842  madjusmdetlem4  33843  pgrple2abl  48475
  Copyright terms: Public domain W3C validator