MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggrp Structured version   Visualization version   GIF version

Theorem symggrp 19262
Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.)
Hypothesis
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
Assertion
Ref Expression
symggrp (𝐴𝑉𝐺 ∈ Grp)

Proof of Theorem symggrp
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2733 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2733 . 2 (𝐴𝑉 → (+g𝐺) = (+g𝐺))
3 symggrp.1 . . . 4 𝐺 = (SymGrp‘𝐴)
4 eqid 2732 . . . 4 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2732 . . . 4 (+g𝐺) = (+g𝐺)
63, 4, 5symgcl 19246 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
763adant1 1130 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
83, 4, 5symgcl 19246 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)𝑔) ∈ (Base‘𝐺))
93, 4, 5symgov 19245 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)𝑔) = (𝑓𝑔))
108, 9symggrplem 18761 . . 3 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
1110adantl 482 . 2 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
123idresperm 19247 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
133, 4, 5symgov 19245 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
1412, 13sylan 580 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥))
153, 4elsymgbas 19235 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
1615biimpa 477 . . . 4 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴1-1-onto𝐴)
17 f1of 6830 . . . 4 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴𝐴)
18 fcoi2 6763 . . . 4 (𝑥:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
1916, 17, 183syl 18 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥)
2014, 19eqtrd 2772 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑥) = 𝑥)
21 f1ocnv 6842 . . . . 5 (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴)
2221a1i 11 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
233, 4elsymgbas 19235 . . . 4 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴1-1-onto𝐴))
2422, 15, 233imtr4d 293 . . 3 (𝐴𝑉 → (𝑥 ∈ (Base‘𝐺) → 𝑥 ∈ (Base‘𝐺)))
2524imp 407 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
263, 4, 5symgov 19245 . . . 4 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
2725, 26sylancom 588 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = (𝑥𝑥))
28 f1ococnv1 6859 . . . 4 (𝑥:𝐴1-1-onto𝐴 → (𝑥𝑥) = ( I ↾ 𝐴))
2916, 28syl 17 . . 3 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥𝑥) = ( I ↾ 𝐴))
3027, 29eqtrd 2772 . 2 ((𝐴𝑉𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑥) = ( I ↾ 𝐴))
311, 2, 7, 11, 12, 20, 25, 30isgrpd 18840 1 (𝐴𝑉𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   I cid 5572  ccnv 5674  cres 5677  ccom 5679  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815  SymGrpcsymg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-efmnd 18746  df-grp 18818  df-symg 19229
This theorem is referenced by:  symginv  19264  symgsubmefmndALT  19265  galactghm  19266  symgga  19269  pgrpsubgsymgbi  19270  pgrpsubgsymg  19271  idressubgsymg  19272  gsumccatsymgsn  19288  symgsssg  19329  symgfisg  19330  symggen  19332  symgtrinv  19334  psgnunilem5  19356  psgnunilem2  19357  psgnuni  19361  psgneldm2  19366  psgnfitr  19379  psgnghm  21124  zrhpsgninv  21129  evpmodpmf1o  21140  mdetleib2  22081  mdetdiag  22092  mdetralt  22101  mdetunilem7  22111  symgtgp  23601  symgfcoeu  32230  symgsubg  32235  cyc3co2  32286  cyc3genpmlem  32297  cyc3genpm  32298  cycpmconjs  32302  cyc3conja  32303  madjusmdetlem3  32797  madjusmdetlem4  32798  pgrple2abl  46994
  Copyright terms: Public domain W3C validator