| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symggrp | Structured version Visualization version GIF version | ||
| Description: The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| Ref | Expression |
|---|---|
| symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| Ref | Expression |
|---|---|
| symggrp | ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐺)) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝐺)) | |
| 3 | symggrp.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 3, 4, 5 | symgcl 19264 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 7 | 6 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 8 | 3, 4, 5 | symgcl 19264 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) ∈ (Base‘𝐺)) |
| 9 | 3, 4, 5 | symgov 19263 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ 𝑔 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
| 10 | 8, 9 | symggrplem 18758 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 12 | 3 | idresperm 19265 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 13 | 3, 4, 5 | symgov 19263 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = (( I ↾ 𝐴) ∘ 𝑥)) |
| 15 | 3, 4 | elsymgbas 19253 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
| 16 | 15 | biimpa 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥:𝐴–1-1-onto→𝐴) |
| 17 | f1of 6764 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → 𝑥:𝐴⟶𝐴) | |
| 18 | fcoi2 6699 | . . . 4 ⊢ (𝑥:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑥) = 𝑥) |
| 20 | 14, 19 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑥) = 𝑥) |
| 21 | f1ocnv 6776 | . . . . 5 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴) | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐴–1-1-onto→𝐴 → ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 23 | 3, 4 | elsymgbas 19253 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (◡𝑥 ∈ (Base‘𝐺) ↔ ◡𝑥:𝐴–1-1-onto→𝐴)) |
| 24 | 22, 15, 23 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝐺) → ◡𝑥 ∈ (Base‘𝐺))) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → ◡𝑥 ∈ (Base‘𝐺)) |
| 26 | 3, 4, 5 | symgov 19263 | . . . 4 ⊢ ((◡𝑥 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 27 | 25, 26 | sylancom 588 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = (◡𝑥 ∘ 𝑥)) |
| 28 | f1ococnv1 6793 | . . . 4 ⊢ (𝑥:𝐴–1-1-onto→𝐴 → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) | |
| 29 | 16, 28 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐴)) |
| 30 | 27, 29 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (Base‘𝐺)) → (◡𝑥(+g‘𝐺)𝑥) = ( I ↾ 𝐴)) |
| 31 | 1, 2, 7, 11, 12, 20, 25, 30 | isgrpd 18837 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 I cid 5513 ◡ccnv 5618 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Grpcgrp 18812 SymGrpcsymg 19248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-efmnd 18743 df-grp 18815 df-symg 19249 |
| This theorem is referenced by: symginv 19281 symgsubmefmndALT 19282 galactghm 19283 symgga 19286 pgrpsubgsymgbi 19287 pgrpsubgsymg 19288 idressubgsymg 19289 gsumccatsymgsn 19305 symgsssg 19346 symgfisg 19347 symggen 19349 symgtrinv 19351 psgnunilem5 19373 psgnunilem2 19374 psgnuni 19378 psgneldm2 19383 psgnfitr 19396 psgnghm 21487 zrhpsgninv 21492 evpmodpmf1o 21503 mdetleib2 22473 mdetdiag 22484 mdetralt 22493 mdetunilem7 22503 symgtgp 23991 symgfcoeu 33025 symgsubg 33030 cyc3co2 33083 cyc3genpmlem 33094 cyc3genpm 33095 cycpmconjs 33099 cyc3conja 33100 mplvrpmga 33548 madjusmdetlem3 33802 madjusmdetlem4 33803 pgrple2abl 48359 |
| Copyright terms: Public domain | W3C validator |