MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrd Structured version   Visualization version   GIF version

Theorem legtrd 28573
Description: Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtrd.e (𝜑𝐸𝑃)
legtrd.f (𝜑𝐹𝑃)
legtrd.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtrd.2 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
Assertion
Ref Expression
legtrd (𝜑 → (𝐴 𝐵) (𝐸 𝐹))

Proof of Theorem legtrd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 eqid 2736 . . . . . 6 (LineG‘𝐺) = (LineG‘𝐺)
3 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
76ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐶𝑃)
8 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
98ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐷𝑃)
10 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥𝑃)
11 eqid 2736 . . . . . 6 (cgrG‘𝐺) = (cgrG‘𝐺)
12 legtrd.e . . . . . . 7 (𝜑𝐸𝑃)
1312ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐸𝑃)
14 simplr 768 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑦𝑃)
15 legval.d . . . . . 6 = (dist‘𝐺)
16 simpllr 775 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
1716simpld 494 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥 ∈ (𝐶𝐼𝐷))
181, 2, 3, 5, 7, 10, 9, 17btwncolg3 28541 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐷 ∈ (𝐶(LineG‘𝐺)𝑥) ∨ 𝐶 = 𝑥))
19 simprr 772 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐶 𝐷) = (𝐸 𝑦))
201, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 18, 19lnext 28551 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
215ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐺 ∈ TarskiG)
2213ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐸𝑃)
23 simplr 768 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧𝑃)
24 simp-4r 783 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦𝑃)
25 legtrd.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2625ad6antr 736 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐹𝑃)
277ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐶𝑃)
2810ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥𝑃)
299ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐷𝑃)
30 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
311, 15, 3, 11, 21, 27, 29, 28, 22, 24, 23, 30cgr3swap23 28508 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝑥𝐷”⟩(cgrG‘𝐺)⟨“𝐸𝑧𝑦”⟩)
3217ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥 ∈ (𝐶𝐼𝐷))
331, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31, 32tgbtwnxfr 28514 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝑦))
34 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
3534simpld 494 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦 ∈ (𝐸𝐼𝐹))
361, 15, 3, 21, 22, 23, 24, 26, 33, 35tgbtwnexch 28482 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝐹))
37 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
3837simprd 495 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐶 𝑥))
391, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31cgr3simp1 28504 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐶 𝑥) = (𝐸 𝑧))
4038, 39eqtrd 2771 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐸 𝑧))
4136, 40jca 511 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
4241ex 412 . . . . . 6 ((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) → (⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4342reximdva 3154 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4420, 43mpd 15 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
45 legtrd.2 . . . . . 6 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
46 legval.l . . . . . . 7 = (≤G‘𝐺)
471, 15, 3, 46, 4, 6, 8, 12, 25legov 28569 . . . . . 6 (𝜑 → ((𝐶 𝐷) (𝐸 𝐹) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))))
4845, 47mpbid 232 . . . . 5 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
4948ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
5044, 49r19.29a 3149 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
51 legtrd.1 . . . 4 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
52 legid.a . . . . 5 (𝜑𝐴𝑃)
53 legid.b . . . . 5 (𝜑𝐵𝑃)
541, 15, 3, 46, 4, 52, 53, 6, 8legov 28569 . . . 4 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
5551, 54mpbid 232 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
5650, 55r19.29a 3149 . 2 (𝜑 → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
571, 15, 3, 46, 4, 52, 53, 12, 25legov 28569 . 2 (𝜑 → ((𝐴 𝐵) (𝐸 𝐹) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
5856, 57mpbird 257 1 (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  ⟨“cs3 14866  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  cgrGccgrg 28494  ≤Gcleg 28566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495  df-leg 28567
This theorem is referenced by:  legso  28583
  Copyright terms: Public domain W3C validator