MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrd Structured version   Visualization version   GIF version

Theorem legtrd 27531
Description: Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtrd.e (𝜑𝐸𝑃)
legtrd.f (𝜑𝐹𝑃)
legtrd.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtrd.2 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
Assertion
Ref Expression
legtrd (𝜑 → (𝐴 𝐵) (𝐸 𝐹))

Proof of Theorem legtrd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 eqid 2736 . . . . . 6 (LineG‘𝐺) = (LineG‘𝐺)
3 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
76ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐶𝑃)
8 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
98ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐷𝑃)
10 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥𝑃)
11 eqid 2736 . . . . . 6 (cgrG‘𝐺) = (cgrG‘𝐺)
12 legtrd.e . . . . . . 7 (𝜑𝐸𝑃)
1312ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐸𝑃)
14 simplr 767 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑦𝑃)
15 legval.d . . . . . 6 = (dist‘𝐺)
16 simpllr 774 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
1716simpld 495 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥 ∈ (𝐶𝐼𝐷))
181, 2, 3, 5, 7, 10, 9, 17btwncolg3 27499 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐷 ∈ (𝐶(LineG‘𝐺)𝑥) ∨ 𝐶 = 𝑥))
19 simprr 771 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐶 𝐷) = (𝐸 𝑦))
201, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 18, 19lnext 27509 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
215ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐺 ∈ TarskiG)
2213ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐸𝑃)
23 simplr 767 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧𝑃)
24 simp-4r 782 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦𝑃)
25 legtrd.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2625ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐹𝑃)
277ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐶𝑃)
2810ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥𝑃)
299ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐷𝑃)
30 simpr 485 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
311, 15, 3, 11, 21, 27, 29, 28, 22, 24, 23, 30cgr3swap23 27466 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝑥𝐷”⟩(cgrG‘𝐺)⟨“𝐸𝑧𝑦”⟩)
3217ad2antrr 724 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥 ∈ (𝐶𝐼𝐷))
331, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31, 32tgbtwnxfr 27472 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝑦))
34 simpllr 774 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
3534simpld 495 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦 ∈ (𝐸𝐼𝐹))
361, 15, 3, 21, 22, 23, 24, 26, 33, 35tgbtwnexch 27440 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝐹))
37 simp-5r 784 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
3837simprd 496 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐶 𝑥))
391, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31cgr3simp1 27462 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐶 𝑥) = (𝐸 𝑧))
4038, 39eqtrd 2776 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐸 𝑧))
4136, 40jca 512 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
4241ex 413 . . . . . 6 ((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) → (⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4342reximdva 3165 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4420, 43mpd 15 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
45 legtrd.2 . . . . . 6 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
46 legval.l . . . . . . 7 = (≤G‘𝐺)
471, 15, 3, 46, 4, 6, 8, 12, 25legov 27527 . . . . . 6 (𝜑 → ((𝐶 𝐷) (𝐸 𝐹) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))))
4845, 47mpbid 231 . . . . 5 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
4948ad2antrr 724 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
5044, 49r19.29a 3159 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
51 legtrd.1 . . . 4 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
52 legid.a . . . . 5 (𝜑𝐴𝑃)
53 legid.b . . . . 5 (𝜑𝐵𝑃)
541, 15, 3, 46, 4, 52, 53, 6, 8legov 27527 . . . 4 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
5551, 54mpbid 231 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
5650, 55r19.29a 3159 . 2 (𝜑 → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
571, 15, 3, 46, 4, 52, 53, 12, 25legov 27527 . 2 (𝜑 → ((𝐴 𝐵) (𝐸 𝐹) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
5856, 57mpbird 256 1 (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  cgrGccgrg 27452  ≤Gcleg 27524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-leg 27525
This theorem is referenced by:  legso  27541
  Copyright terms: Public domain W3C validator