MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrd Structured version   Visualization version   GIF version

Theorem legtrd 25908
Description: Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtrd.e (𝜑𝐸𝑃)
legtrd.f (𝜑𝐹𝑃)
legtrd.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtrd.2 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
Assertion
Ref Expression
legtrd (𝜑 → (𝐴 𝐵) (𝐸 𝐹))

Proof of Theorem legtrd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 eqid 2825 . . . . . 6 (LineG‘𝐺) = (LineG‘𝐺)
3 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 724 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
76ad4antr 724 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐶𝑃)
8 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
98ad4antr 724 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐷𝑃)
10 simp-4r 803 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥𝑃)
11 eqid 2825 . . . . . 6 (cgrG‘𝐺) = (cgrG‘𝐺)
12 legtrd.e . . . . . . 7 (𝜑𝐸𝑃)
1312ad4antr 724 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐸𝑃)
14 simplr 785 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑦𝑃)
15 legval.d . . . . . 6 = (dist‘𝐺)
16 simpllr 793 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
1716simpld 490 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥 ∈ (𝐶𝐼𝐷))
181, 2, 3, 5, 7, 10, 9, 17btwncolg3 25876 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐷 ∈ (𝐶(LineG‘𝐺)𝑥) ∨ 𝐶 = 𝑥))
19 simprr 789 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐶 𝐷) = (𝐸 𝑦))
201, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 18, 19lnext 25886 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
215ad2antrr 717 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐺 ∈ TarskiG)
2213ad2antrr 717 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐸𝑃)
23 simplr 785 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧𝑃)
24 simp-4r 803 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦𝑃)
25 legtrd.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2625ad6antr 732 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐹𝑃)
277ad2antrr 717 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐶𝑃)
2810ad2antrr 717 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥𝑃)
299ad2antrr 717 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐷𝑃)
30 simpr 479 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
311, 15, 3, 11, 21, 27, 29, 28, 22, 24, 23, 30cgr3swap23 25843 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝑥𝐷”⟩(cgrG‘𝐺)⟨“𝐸𝑧𝑦”⟩)
3217ad2antrr 717 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥 ∈ (𝐶𝐼𝐷))
331, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31, 32tgbtwnxfr 25849 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝑦))
34 simpllr 793 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
3534simpld 490 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦 ∈ (𝐸𝐼𝐹))
361, 15, 3, 21, 22, 23, 24, 26, 33, 35tgbtwnexch 25817 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝐹))
37 simp-5r 807 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
3837simprd 491 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐶 𝑥))
391, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31cgr3simp1 25839 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐶 𝑥) = (𝐸 𝑧))
4038, 39eqtrd 2861 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐸 𝑧))
4136, 40jca 507 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
4241ex 403 . . . . . 6 ((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) → (⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4342reximdva 3225 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4420, 43mpd 15 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
45 legtrd.2 . . . . . 6 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
46 legval.l . . . . . . 7 = (≤G‘𝐺)
471, 15, 3, 46, 4, 6, 8, 12, 25legov 25904 . . . . . 6 (𝜑 → ((𝐶 𝐷) (𝐸 𝐹) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))))
4845, 47mpbid 224 . . . . 5 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
4948ad2antrr 717 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
5044, 49r19.29a 3288 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
51 legtrd.1 . . . 4 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
52 legid.a . . . . 5 (𝜑𝐴𝑃)
53 legid.b . . . . 5 (𝜑𝐵𝑃)
541, 15, 3, 46, 4, 52, 53, 6, 8legov 25904 . . . 4 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
5551, 54mpbid 224 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
5650, 55r19.29a 3288 . 2 (𝜑 → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
571, 15, 3, 46, 4, 52, 53, 12, 25legov 25904 . 2 (𝜑 → ((𝐴 𝐵) (𝐸 𝐹) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
5856, 57mpbird 249 1 (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  ⟨“cs3 13970  Basecbs 16229  distcds 16321  TarskiGcstrkg 25749  Itvcitv 25755  LineGclng 25756  cgrGccgrg 25829  ≤Gcleg 25901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-concat 13638  df-s1 13663  df-s2 13976  df-s3 13977  df-trkgc 25767  df-trkgb 25768  df-trkgcb 25769  df-trkg 25772  df-cgrg 25830  df-leg 25902
This theorem is referenced by:  legso  25918
  Copyright terms: Public domain W3C validator