MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legtrd Structured version   Visualization version   GIF version

Theorem legtrd 28567
Description: Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legid.a (𝜑𝐴𝑃)
legid.b (𝜑𝐵𝑃)
legtrd.c (𝜑𝐶𝑃)
legtrd.d (𝜑𝐷𝑃)
legtrd.e (𝜑𝐸𝑃)
legtrd.f (𝜑𝐹𝑃)
legtrd.1 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
legtrd.2 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
Assertion
Ref Expression
legtrd (𝜑 → (𝐴 𝐵) (𝐸 𝐹))

Proof of Theorem legtrd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
2 eqid 2731 . . . . . 6 (LineG‘𝐺) = (LineG‘𝐺)
3 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 legval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐺 ∈ TarskiG)
6 legtrd.c . . . . . . 7 (𝜑𝐶𝑃)
76ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐶𝑃)
8 legtrd.d . . . . . . 7 (𝜑𝐷𝑃)
98ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐷𝑃)
10 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥𝑃)
11 eqid 2731 . . . . . 6 (cgrG‘𝐺) = (cgrG‘𝐺)
12 legtrd.e . . . . . . 7 (𝜑𝐸𝑃)
1312ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝐸𝑃)
14 simplr 768 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑦𝑃)
15 legval.d . . . . . 6 = (dist‘𝐺)
16 simpllr 775 . . . . . . . 8 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
1716simpld 494 . . . . . . 7 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → 𝑥 ∈ (𝐶𝐼𝐷))
181, 2, 3, 5, 7, 10, 9, 17btwncolg3 28535 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐷 ∈ (𝐶(LineG‘𝐺)𝑥) ∨ 𝐶 = 𝑥))
19 simprr 772 . . . . . 6 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (𝐶 𝐷) = (𝐸 𝑦))
201, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 18, 19lnext 28545 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
215ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐺 ∈ TarskiG)
2213ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐸𝑃)
23 simplr 768 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧𝑃)
24 simp-4r 783 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦𝑃)
25 legtrd.f . . . . . . . . . 10 (𝜑𝐹𝑃)
2625ad6antr 736 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐹𝑃)
277ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐶𝑃)
2810ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥𝑃)
299ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝐷𝑃)
30 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩)
311, 15, 3, 11, 21, 27, 29, 28, 22, 24, 23, 30cgr3swap23 28502 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → ⟨“𝐶𝑥𝐷”⟩(cgrG‘𝐺)⟨“𝐸𝑧𝑦”⟩)
3217ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑥 ∈ (𝐶𝐼𝐷))
331, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31, 32tgbtwnxfr 28508 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝑦))
34 simpllr 775 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
3534simpld 494 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑦 ∈ (𝐸𝐼𝐹))
361, 15, 3, 21, 22, 23, 24, 26, 33, 35tgbtwnexch 28476 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → 𝑧 ∈ (𝐸𝐼𝐹))
37 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
3837simprd 495 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐶 𝑥))
391, 15, 3, 11, 21, 27, 28, 29, 22, 23, 24, 31cgr3simp1 28498 . . . . . . . . 9 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐶 𝑥) = (𝐸 𝑧))
4038, 39eqtrd 2766 . . . . . . . 8 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝐴 𝐵) = (𝐸 𝑧))
4136, 40jca 511 . . . . . . 7 (((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) ∧ ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩) → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
4241ex 412 . . . . . 6 ((((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) ∧ 𝑧𝑃) → (⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4342reximdva 3145 . . . . 5 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → (∃𝑧𝑃 ⟨“𝐶𝐷𝑥”⟩(cgrG‘𝐺)⟨“𝐸𝑦𝑧”⟩ → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
4420, 43mpd 15 . . . 4 (((((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) ∧ 𝑦𝑃) ∧ (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
45 legtrd.2 . . . . . 6 (𝜑 → (𝐶 𝐷) (𝐸 𝐹))
46 legval.l . . . . . . 7 = (≤G‘𝐺)
471, 15, 3, 46, 4, 6, 8, 12, 25legov 28563 . . . . . 6 (𝜑 → ((𝐶 𝐷) (𝐸 𝐹) ↔ ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦))))
4845, 47mpbid 232 . . . . 5 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
4948ad2antrr 726 . . . 4 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑦𝑃 (𝑦 ∈ (𝐸𝐼𝐹) ∧ (𝐶 𝐷) = (𝐸 𝑦)))
5044, 49r19.29a 3140 . . 3 (((𝜑𝑥𝑃) ∧ (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))) → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
51 legtrd.1 . . . 4 (𝜑 → (𝐴 𝐵) (𝐶 𝐷))
52 legid.a . . . . 5 (𝜑𝐴𝑃)
53 legid.b . . . . 5 (𝜑𝐵𝑃)
541, 15, 3, 46, 4, 52, 53, 6, 8legov 28563 . . . 4 (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥))))
5551, 54mpbid 232 . . 3 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑥)))
5650, 55r19.29a 3140 . 2 (𝜑 → ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧)))
571, 15, 3, 46, 4, 52, 53, 12, 25legov 28563 . 2 (𝜑 → ((𝐴 𝐵) (𝐸 𝐹) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐸𝐼𝐹) ∧ (𝐴 𝐵) = (𝐸 𝑧))))
5856, 57mpbird 257 1 (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  ⟨“cs3 14749  Basecbs 17120  distcds 17170  TarskiGcstrkg 28405  Itvcitv 28411  LineGclng 28412  cgrGccgrg 28488  ≤Gcleg 28560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-trkgc 28426  df-trkgb 28427  df-trkgcb 28428  df-trkg 28431  df-cgrg 28489  df-leg 28561
This theorem is referenced by:  legso  28577
  Copyright terms: Public domain W3C validator