MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hltr Structured version   Visualization version   GIF version

Theorem hltr 28632
Description: The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hltr.1 (𝜑𝐴(𝐾𝐷)𝐵)
hltr.2 (𝜑𝐵(𝐾𝐷)𝐶)
Assertion
Ref Expression
hltr (𝜑𝐴(𝐾𝐷)𝐶)

Proof of Theorem hltr
StepHypRef Expression
1 ishlg.p . . 3 𝑃 = (Base‘𝐺)
2 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
3 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
4 ishlg.a . . 3 (𝜑𝐴𝑃)
5 ishlg.b . . 3 (𝜑𝐵𝑃)
6 hltr.d . . 3 (𝜑𝐷𝑃)
7 hlln.1 . . 3 (𝜑𝐺 ∈ TarskiG)
8 hltr.1 . . 3 (𝜑𝐴(𝐾𝐷)𝐵)
91, 2, 3, 4, 5, 6, 7, 8hlne1 28627 . 2 (𝜑𝐴𝐷)
10 ishlg.c . . 3 (𝜑𝐶𝑃)
11 hltr.2 . . 3 (𝜑𝐵(𝐾𝐷)𝐶)
121, 2, 3, 5, 10, 6, 7, 11hlne2 28628 . 2 (𝜑𝐶𝐷)
13 eqid 2734 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
147ad2antrr 726 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
156ad2antrr 726 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
164ad2antrr 726 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
175ad2antrr 726 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
1810ad2antrr 726 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
19 simplr 769 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐵))
20 simpr 484 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
211, 13, 2, 14, 15, 16, 17, 18, 19, 20tgbtwnexch 28520 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐶))
2221orcd 873 . . . 4 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
237ad2antrr 726 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
246ad2antrr 726 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
254ad2antrr 726 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
2610ad2antrr 726 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
275ad2antrr 726 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
28 simplr 769 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
29 simpr 484 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
301, 2, 23, 24, 25, 26, 27, 28, 29tgbtwnconn3 28599 . . . 4 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
311, 2, 3, 5, 10, 6, 7ishlg 28624 . . . . . . 7 (𝜑 → (𝐵(𝐾𝐷)𝐶 ↔ (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))))
3211, 31mpbid 232 . . . . . 6 (𝜑 → (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵))))
3332simp3d 1143 . . . . 5 (𝜑 → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3433adantr 480 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3522, 30, 34mpjaodan 960 . . 3 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
367ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
376ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
385ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
394ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
4010ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
4132simp1d 1141 . . . . . . 7 (𝜑𝐵𝐷)
4241necomd 2993 . . . . . 6 (𝜑𝐷𝐵)
4342ad2antrr 726 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝐵)
44 simplr 769 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐴))
45 simpr 484 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
461, 2, 36, 37, 38, 39, 40, 43, 44, 45tgbtwnconn1 28597 . . . 4 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
477ad2antrr 726 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
486ad2antrr 726 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
4910ad2antrr 726 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
505ad2antrr 726 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
514ad2antrr 726 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
52 simpr 484 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
53 simplr 769 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ (𝐷𝐼𝐴))
541, 13, 2, 47, 48, 49, 50, 51, 52, 53tgbtwnexch 28520 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐴))
5554olcd 874 . . . 4 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
5633adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
5746, 55, 56mpjaodan 960 . . 3 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
581, 2, 3, 4, 5, 6, 7ishlg 28624 . . . . 5 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
598, 58mpbid 232 . . . 4 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
6059simp3d 1143 . . 3 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
6135, 57, 60mpjaodan 960 . 2 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
621, 2, 3, 4, 10, 6, 7ishlg 28624 . 2 (𝜑 → (𝐴(𝐾𝐷)𝐶 ↔ (𝐴𝐷𝐶𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))))
639, 12, 61, 62mpbir3and 1341 1 (𝜑𝐴(𝐾𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  Itvcitv 28455  hlGchlg 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883  df-s3 14884  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475  df-cgrg 28533  df-hlg 28623
This theorem is referenced by:  opphllem4  28772  cgrahl1  28838  cgrahl2  28839  cgrahl  28849  acopyeu  28856  inaghl  28867
  Copyright terms: Public domain W3C validator