MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbtwn Structured version   Visualization version   GIF version

Theorem hlbtwn 26397
Description: Betweenness is a sufficient condition to swap half-lines. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlbtwn.1 (𝜑𝐷 ∈ (𝐶𝐼𝐵))
hlbtwn.2 (𝜑𝐵𝐶)
hlbtwn.3 (𝜑𝐷𝐶)
Assertion
Ref Expression
hlbtwn (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴(𝐾𝐶)𝐷))

Proof of Theorem hlbtwn
StepHypRef Expression
1 hlbtwn.2 . . . 4 (𝜑𝐵𝐶)
2 hlbtwn.3 . . . 4 (𝜑𝐷𝐶)
31, 22thd 267 . . 3 (𝜑 → (𝐵𝐶𝐷𝐶))
4 ishlg.p . . . . . 6 𝑃 = (Base‘𝐺)
5 ishlg.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
76adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
8 ishlg.c . . . . . . 7 (𝜑𝐶𝑃)
98adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
10 ishlg.a . . . . . . 7 (𝜑𝐴𝑃)
1110adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
12 hltr.d . . . . . . 7 (𝜑𝐷𝑃)
1312adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐷𝑃)
14 ishlg.b . . . . . . 7 (𝜑𝐵𝑃)
1514adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
16 simpr 487 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
17 hlbtwn.1 . . . . . . 7 (𝜑𝐷 ∈ (𝐶𝐼𝐵))
1817adantr 483 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐷 ∈ (𝐶𝐼𝐵))
194, 5, 7, 9, 11, 13, 15, 16, 18tgbtwnconn3 26363 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
20 eqid 2821 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
216adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
228adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
2312adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷𝑃)
2414adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
2510adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
2617adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐵))
27 simpr 487 . . . . . . 7 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
284, 20, 5, 21, 22, 23, 24, 25, 26, 27tgbtwnexch 26284 . . . . . 6 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐴))
2928olcd 870 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
3019, 29jaodan 954 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) → (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))
316adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐺 ∈ TarskiG)
328adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐶𝑃)
3310adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴𝑃)
3412adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐷𝑃)
3514adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐵𝑃)
36 simpr 487 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴 ∈ (𝐶𝐼𝐷))
3717adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐷 ∈ (𝐶𝐼𝐵))
384, 20, 5, 31, 32, 33, 34, 35, 36, 37tgbtwnexch 26284 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → 𝐴 ∈ (𝐶𝐼𝐵))
3938orcd 869 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐷)) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
406adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
418adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
4212adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷𝑃)
4310adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
4414adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
452necomd 3071 . . . . . . 7 (𝜑𝐶𝐷)
4645adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐶𝐷)
47 simpr 487 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐴))
4817adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → 𝐷 ∈ (𝐶𝐼𝐵))
494, 5, 40, 41, 42, 43, 44, 46, 47, 48tgbtwnconn1 26361 . . . . 5 ((𝜑𝐷 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
5039, 49jaodan 954 . . . 4 ((𝜑 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴))) → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
5130, 50impbida 799 . . 3 (𝜑 → ((𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)) ↔ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴))))
523, 513anbi23d 1435 . 2 (𝜑 → ((𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) ↔ (𝐴𝐶𝐷𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))))
53 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
544, 5, 53, 10, 14, 8, 6ishlg 26388 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
554, 5, 53, 10, 12, 8, 6ishlg 26388 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐷 ↔ (𝐴𝐶𝐷𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐷) ∨ 𝐷 ∈ (𝐶𝐼𝐴)))))
5652, 54, 553bitr4d 313 1 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐴(𝐾𝐶)𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  hlGchlg 26386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgb 26235  df-trkgcb 26236  df-trkg 26239  df-cgrg 26297  df-hlg 26387
This theorem is referenced by:  opphllem3  26535  hlpasch  26542
  Copyright terms: Public domain W3C validator