Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4t2e8 | Structured version Visualization version GIF version |
Description: 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
4t2e8 | ⊢ (4 · 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4cn 11988 | . . 3 ⊢ 4 ∈ ℂ | |
2 | 1 | times2i 12042 | . 2 ⊢ (4 · 2) = (4 + 4) |
3 | 4p4e8 12058 | . 2 ⊢ (4 + 4) = 8 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (4 · 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 + caddc 10805 · cmul 10807 2c2 11958 4c4 11960 8c8 11964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 |
This theorem is referenced by: 8th4div3 12123 4t3e12 12464 sq4e2t8 13844 cu2 13845 sqoddm1div8 13886 cos2bnd 15825 2exp7 16717 2exp8 16718 8nprm 16741 19prm 16747 139prm 16753 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 quart1lem 25910 quart1 25911 quartlem1 25912 log2tlbnd 26000 log2ub 26004 bpos1 26336 bposlem8 26344 lgsdir2lem2 26379 2lgslem3a 26449 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 2lgsoddprmlem2 26462 2lgsoddprmlem3c 26465 2lgsoddprmlem3d 26466 chebbnd1lem2 26523 chebbnd1lem3 26524 pntlemr 26655 ex-exp 28715 420gcd8e4 39942 420lcm8e840 39947 lcmineqlem23 39987 3lexlogpow2ineq2 39995 fmtno4prmfac 44912 139prmALT 44936 mod42tp1mod8 44942 3exp4mod41 44956 41prothprm 44959 8even 45053 2exp340mod341 45073 8exp8mod9 45076 |
Copyright terms: Public domain | W3C validator |