![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4t2e8 | Structured version Visualization version GIF version |
Description: 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
4t2e8 | ⊢ (4 · 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4cn 12378 | . . 3 ⊢ 4 ∈ ℂ | |
2 | 1 | times2i 12432 | . 2 ⊢ (4 · 2) = (4 + 4) |
3 | 4p4e8 12448 | . 2 ⊢ (4 + 4) = 8 | |
4 | 2, 3 | eqtri 2768 | 1 ⊢ (4 · 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 + caddc 11187 · cmul 11189 2c2 12348 4c4 12350 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: 8th4div3 12513 4t3e12 12856 sq4e2t8 14248 cu2 14249 sqoddm1div8 14292 cos2bnd 16236 2exp7 17135 2exp8 17136 8nprm 17159 19prm 17165 139prm 17171 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 quart1lem 26916 quart1 26917 quartlem1 26918 log2tlbnd 27006 log2ub 27010 bpos1 27345 bposlem8 27353 lgsdir2lem2 27388 2lgslem3a 27458 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 2lgsoddprmlem2 27471 2lgsoddprmlem3c 27474 2lgsoddprmlem3d 27475 chebbnd1lem2 27532 chebbnd1lem3 27533 pntlemr 27664 ex-exp 30482 420gcd8e4 41963 420lcm8e840 41968 lcmineqlem23 42008 3lexlogpow2ineq2 42016 sum9cubes 42627 fmtno4prmfac 47446 139prmALT 47470 mod42tp1mod8 47476 3exp4mod41 47490 41prothprm 47493 8even 47587 2exp340mod341 47607 8exp8mod9 47610 |
Copyright terms: Public domain | W3C validator |