Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4t2e8 | Structured version Visualization version GIF version |
Description: 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
4t2e8 | ⊢ (4 · 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4cn 12046 | . . 3 ⊢ 4 ∈ ℂ | |
2 | 1 | times2i 12100 | . 2 ⊢ (4 · 2) = (4 + 4) |
3 | 4p4e8 12116 | . 2 ⊢ (4 + 4) = 8 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (4 · 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7268 + caddc 10862 · cmul 10864 2c2 12016 4c4 12018 8c8 12022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-mulcl 10921 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-1rid 10929 ax-cnre 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-iota 6385 df-fv 6435 df-ov 7271 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 |
This theorem is referenced by: 8th4div3 12181 4t3e12 12523 sq4e2t8 13904 cu2 13905 sqoddm1div8 13946 cos2bnd 15885 2exp7 16777 2exp8 16778 8nprm 16801 19prm 16807 139prm 16813 1259lem2 16821 1259lem3 16822 1259lem4 16823 1259lem5 16824 2503lem1 16826 2503lem2 16827 4001lem1 16830 4001lem2 16831 4001lem3 16832 4001lem4 16833 quart1lem 25993 quart1 25994 quartlem1 25995 log2tlbnd 26083 log2ub 26087 bpos1 26419 bposlem8 26427 lgsdir2lem2 26462 2lgslem3a 26532 2lgslem3b 26533 2lgslem3c 26534 2lgslem3d 26535 2lgsoddprmlem2 26545 2lgsoddprmlem3c 26548 2lgsoddprmlem3d 26549 chebbnd1lem2 26606 chebbnd1lem3 26607 pntlemr 26738 ex-exp 28800 420gcd8e4 40000 420lcm8e840 40005 lcmineqlem23 40045 3lexlogpow2ineq2 40053 fmtno4prmfac 44980 139prmALT 45004 mod42tp1mod8 45010 3exp4mod41 45024 41prothprm 45027 8even 45121 2exp340mod341 45141 8exp8mod9 45144 |
Copyright terms: Public domain | W3C validator |