![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4t2e8 | Structured version Visualization version GIF version |
Description: 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
4t2e8 | ⊢ (4 · 2) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4cn 12349 | . . 3 ⊢ 4 ∈ ℂ | |
2 | 1 | times2i 12403 | . 2 ⊢ (4 · 2) = (4 + 4) |
3 | 4p4e8 12419 | . 2 ⊢ (4 + 4) = 8 | |
4 | 2, 3 | eqtri 2763 | 1 ⊢ (4 · 2) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 + caddc 11156 · cmul 11158 2c2 12319 4c4 12321 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-1rid 11223 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 |
This theorem is referenced by: 8th4div3 12484 4t3e12 12829 sq4e2t8 14235 cu2 14236 sqoddm1div8 14279 cos2bnd 16221 2exp7 17122 2exp8 17123 8nprm 17146 19prm 17152 139prm 17158 1259lem2 17166 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem1 17171 2503lem2 17172 4001lem1 17175 4001lem2 17176 4001lem3 17177 4001lem4 17178 quart1lem 26913 quart1 26914 quartlem1 26915 log2tlbnd 27003 log2ub 27007 bpos1 27342 bposlem8 27350 lgsdir2lem2 27385 2lgslem3a 27455 2lgslem3b 27456 2lgslem3c 27457 2lgslem3d 27458 2lgsoddprmlem2 27468 2lgsoddprmlem3c 27471 2lgsoddprmlem3d 27472 chebbnd1lem2 27529 chebbnd1lem3 27530 pntlemr 27661 ex-exp 30479 420gcd8e4 41988 420lcm8e840 41993 lcmineqlem23 42033 3lexlogpow2ineq2 42041 sum9cubes 42659 fmtno4prmfac 47497 139prmALT 47521 mod42tp1mod8 47527 3exp4mod41 47541 41prothprm 47544 8even 47638 2exp340mod341 47658 8exp8mod9 47661 |
Copyright terms: Public domain | W3C validator |