| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4t2e8 | Structured version Visualization version GIF version | ||
| Description: 4 times 2 equals 8. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 4t2e8 | ⊢ (4 · 2) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4cn 12205 | . . 3 ⊢ 4 ∈ ℂ | |
| 2 | 1 | times2i 12254 | . 2 ⊢ (4 · 2) = (4 + 4) |
| 3 | 4p4e8 12270 | . 2 ⊢ (4 + 4) = 8 | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ (4 · 2) = 8 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 + caddc 11004 · cmul 11006 2c2 12175 4c4 12177 8c8 12181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-1rid 11071 ax-cnre 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 |
| This theorem is referenced by: 8th4div3 12336 4t3e12 12681 sq4e2t8 14101 cu2 14102 sqoddm1div8 14145 cos2bnd 16092 2exp7 16994 2exp8 16995 8nprm 17018 19prm 17024 139prm 17030 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 2503lem1 17043 2503lem2 17044 4001lem1 17047 4001lem2 17048 4001lem3 17049 4001lem4 17050 quart1lem 26787 quart1 26788 quartlem1 26789 log2tlbnd 26877 log2ub 26881 bpos1 27216 bposlem8 27224 lgsdir2lem2 27259 2lgslem3a 27329 2lgslem3b 27330 2lgslem3c 27331 2lgslem3d 27332 2lgsoddprmlem2 27342 2lgsoddprmlem3c 27345 2lgsoddprmlem3d 27346 chebbnd1lem2 27403 chebbnd1lem3 27404 pntlemr 27535 ex-exp 30422 420gcd8e4 42039 420lcm8e840 42044 lcmineqlem23 42084 3lexlogpow2ineq2 42092 sum9cubes 42705 fmtno4prmfac 47603 139prmALT 47627 mod42tp1mod8 47633 3exp4mod41 47647 41prothprm 47650 8even 47744 2exp340mod341 47764 8exp8mod9 47767 pgnbgreunbgrlem4 48150 |
| Copyright terms: Public domain | W3C validator |