|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 6t2e12 | Structured version Visualization version GIF version | ||
| Description: 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| 6t2e12 | ⊢ (6 · 2) = ;12 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6cn 12358 | . . 3 ⊢ 6 ∈ ℂ | |
| 2 | 1 | times2i 12406 | . 2 ⊢ (6 · 2) = (6 + 6) | 
| 3 | 6p6e12 12809 | . 2 ⊢ (6 + 6) = ;12 | |
| 4 | 2, 3 | eqtri 2764 | 1 ⊢ (6 · 2) = ;12 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 (class class class)co 7432 1c1 11157 + caddc 11159 · cmul 11161 2c2 12322 6c6 12326 ;cdc 12735 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-dec 12736 | 
| This theorem is referenced by: 6t3e18 12840 6lcm4e12 16654 2exp7 17126 2exp16 17129 139prm 17162 1259lem1 17169 1259lem4 17172 2503lem1 17175 2503lem2 17176 2503lem3 17177 4001lem1 17179 4001lem4 17182 log2ublem3 26992 aks4d1p1p5 42077 aks4d1p1 42078 resqrtvalex 43663 fmtno4prmfac 47564 139prmALT 47588 2exp340mod341 47725 | 
| Copyright terms: Public domain | W3C validator |