| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| threehalves | ⊢ (3 / 2) = (1.5) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12329 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 2 | 2re 12323 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2ne0 12353 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 1, 2, 3 | redivcli 12017 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 5 | 4 | recni 11258 | . . 3 ⊢ (3 / 2) ∈ ℂ |
| 6 | 1nn0 12526 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 7 | 5re 12336 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 8 | dpcl 32820 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
| 10 | 9 | recni 11258 | . . 3 ⊢ (1.5) ∈ ℂ |
| 11 | 2cnne0 12459 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 12 | 5, 10, 11 | 3pm3.2i 1339 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 13 | 5nn0 12530 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 14 | 3nn0 12528 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 15 | 0nn0 12525 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | eqid 2734 | . . . . . 6 ⊢ ;15 = ;15 | |
| 17 | df-2 12312 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 18 | 17 | oveq1i 7424 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
| 19 | 2p1e3 12391 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 20 | 18, 19 | eqtr3i 2759 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
| 21 | 5p5e10 12788 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
| 22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12772 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
| 23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32840 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
| 24 | 14 | dp0u 32830 | . . . 4 ⊢ (3.0) = 3 |
| 25 | 23, 24 | eqtri 2757 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
| 26 | 10 | times2i 12388 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
| 27 | 1 | recni 11258 | . . . 4 ⊢ 3 ∈ ℂ |
| 28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
| 29 | 27, 28, 3 | divcan1i 11994 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
| 30 | 25, 26, 29 | 3eqtr4ri 2768 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
| 31 | mulcan2 11884 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
| 32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
| 33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7414 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 / cdiv 11903 2c2 12304 3c3 12305 5c5 12307 ℕ0cn0 12510 ;cdc 12717 .cdp 32817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-dec 12718 df-dp2 32801 df-dp 32818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |