![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version |
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
threehalves | ⊢ (3 / 2) = (1.5) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12308 | . . . . 5 ⊢ 3 ∈ ℝ | |
2 | 2re 12302 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2ne0 12332 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | redivcli 11997 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
5 | 4 | recni 11244 | . . 3 ⊢ (3 / 2) ∈ ℂ |
6 | 1nn0 12504 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 5re 12315 | . . . . 5 ⊢ 5 ∈ ℝ | |
8 | dpcl 32583 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
9 | 6, 7, 8 | mp2an 691 | . . . 4 ⊢ (1.5) ∈ ℝ |
10 | 9 | recni 11244 | . . 3 ⊢ (1.5) ∈ ℂ |
11 | 2cnne0 12438 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
12 | 5, 10, 11 | 3pm3.2i 1337 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
13 | 5nn0 12508 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
14 | 3nn0 12506 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
15 | 0nn0 12503 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | eqid 2727 | . . . . . 6 ⊢ ;15 = ;15 | |
17 | df-2 12291 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
18 | 17 | oveq1i 7424 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
19 | 2p1e3 12370 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtr3i 2757 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
21 | 5p5e10 12764 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12748 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32603 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
24 | 14 | dp0u 32593 | . . . 4 ⊢ (3.0) = 3 |
25 | 23, 24 | eqtri 2755 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
26 | 10 | times2i 12367 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
27 | 1 | recni 11244 | . . . 4 ⊢ 3 ∈ ℂ |
28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
29 | 27, 28, 3 | divcan1i 11974 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
30 | 25, 26, 29 | 3eqtr4ri 2766 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
31 | mulcan2 11868 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
33 | 12, 30, 32 | mp2an 691 | 1 ⊢ (3 / 2) = (1.5) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 (class class class)co 7414 ℂcc 11122 ℝcr 11123 0cc0 11124 1c1 11125 + caddc 11127 · cmul 11129 / cdiv 11887 2c2 12283 3c3 12284 5c5 12286 ℕ0cn0 12488 ;cdc 12693 .cdp 32580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-dec 12694 df-dp2 32564 df-dp 32581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |