![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version |
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
threehalves | ⊢ (3 / 2) = (1.5) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 12291 | . . . . 5 ⊢ 3 ∈ ℝ | |
2 | 2re 12285 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2ne0 12315 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | redivcli 11980 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
5 | 4 | recni 11227 | . . 3 ⊢ (3 / 2) ∈ ℂ |
6 | 1nn0 12487 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 5re 12298 | . . . . 5 ⊢ 5 ∈ ℝ | |
8 | dpcl 32052 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
9 | 6, 7, 8 | mp2an 690 | . . . 4 ⊢ (1.5) ∈ ℝ |
10 | 9 | recni 11227 | . . 3 ⊢ (1.5) ∈ ℂ |
11 | 2cnne0 12421 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
12 | 5, 10, 11 | 3pm3.2i 1339 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
13 | 5nn0 12491 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
14 | 3nn0 12489 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
15 | 0nn0 12486 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | eqid 2732 | . . . . . 6 ⊢ ;15 = ;15 | |
17 | df-2 12274 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
18 | 17 | oveq1i 7418 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
19 | 2p1e3 12353 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtr3i 2762 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
21 | 5p5e10 12747 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12731 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32072 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
24 | 14 | dp0u 32062 | . . . 4 ⊢ (3.0) = 3 |
25 | 23, 24 | eqtri 2760 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
26 | 10 | times2i 12350 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
27 | 1 | recni 11227 | . . . 4 ⊢ 3 ∈ ℂ |
28 | 11 | simpli 484 | . . . 4 ⊢ 2 ∈ ℂ |
29 | 27, 28, 3 | divcan1i 11957 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
30 | 25, 26, 29 | 3eqtr4ri 2771 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
31 | mulcan2 11851 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
32 | 31 | biimpa 477 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
33 | 12, 30, 32 | mp2an 690 | 1 ⊢ (3 / 2) = (1.5) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 (class class class)co 7408 ℂcc 11107 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 / cdiv 11870 2c2 12266 3c3 12267 5c5 12269 ℕ0cn0 12471 ;cdc 12676 .cdp 32049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 df-dp2 32033 df-dp 32050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |