| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| threehalves | ⊢ (3 / 2) = (1.5) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12212 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 2 | 2re 12206 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2ne0 12236 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 1, 2, 3 | redivcli 11895 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 5 | 4 | recni 11133 | . . 3 ⊢ (3 / 2) ∈ ℂ |
| 6 | 1nn0 12404 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 7 | 5re 12219 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 8 | dpcl 32878 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
| 10 | 9 | recni 11133 | . . 3 ⊢ (1.5) ∈ ℂ |
| 11 | 2cnne0 12337 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 12 | 5, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 13 | 5nn0 12408 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 14 | 3nn0 12406 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 15 | 0nn0 12403 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | eqid 2733 | . . . . . 6 ⊢ ;15 = ;15 | |
| 17 | df-2 12195 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 18 | 17 | oveq1i 7362 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
| 19 | 2p1e3 12269 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 20 | 18, 19 | eqtr3i 2758 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
| 21 | 5p5e10 12665 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
| 22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12649 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
| 23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32898 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
| 24 | 14 | dp0u 32888 | . . . 4 ⊢ (3.0) = 3 |
| 25 | 23, 24 | eqtri 2756 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
| 26 | 10 | times2i 12266 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
| 27 | 1 | recni 11133 | . . . 4 ⊢ 3 ∈ ℂ |
| 28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
| 29 | 27, 28, 3 | divcan1i 11872 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
| 30 | 25, 26, 29 | 3eqtr4ri 2767 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
| 31 | mulcan2 11762 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
| 32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
| 33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 / cdiv 11781 2c2 12187 3c3 12188 5c5 12190 ℕ0cn0 12388 ;cdc 12594 .cdp 32875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-dec 12595 df-dp2 32859 df-dp 32876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |