Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version |
Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
threehalves | ⊢ (3 / 2) = (1.5) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 11915 | . . . . 5 ⊢ 3 ∈ ℝ | |
2 | 2re 11909 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2ne0 11939 | . . . . 5 ⊢ 2 ≠ 0 | |
4 | 1, 2, 3 | redivcli 11604 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
5 | 4 | recni 10852 | . . 3 ⊢ (3 / 2) ∈ ℂ |
6 | 1nn0 12111 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
7 | 5re 11922 | . . . . 5 ⊢ 5 ∈ ℝ | |
8 | dpcl 30890 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
10 | 9 | recni 10852 | . . 3 ⊢ (1.5) ∈ ℂ |
11 | 2cnne0 12045 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
12 | 5, 10, 11 | 3pm3.2i 1341 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
13 | 5nn0 12115 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
14 | 3nn0 12113 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
15 | 0nn0 12110 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
16 | eqid 2737 | . . . . . 6 ⊢ ;15 = ;15 | |
17 | df-2 11898 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
18 | 17 | oveq1i 7228 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
19 | 2p1e3 11977 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
20 | 18, 19 | eqtr3i 2767 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
21 | 5p5e10 12369 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12353 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 30910 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
24 | 14 | dp0u 30900 | . . . 4 ⊢ (3.0) = 3 |
25 | 23, 24 | eqtri 2765 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
26 | 10 | times2i 11974 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
27 | 1 | recni 10852 | . . . 4 ⊢ 3 ∈ ℂ |
28 | 11 | simpli 487 | . . . 4 ⊢ 2 ∈ ℂ |
29 | 27, 28, 3 | divcan1i 11581 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
30 | 25, 26, 29 | 3eqtr4ri 2776 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
31 | mulcan2 11475 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
32 | 31 | biimpa 480 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 (class class class)co 7218 ℂcc 10732 ℝcr 10733 0cc0 10734 1c1 10735 + caddc 10737 · cmul 10739 / cdiv 11494 2c2 11890 3c3 11891 5c5 11893 ℕ0cn0 12095 ;cdc 12298 .cdp 30887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-7 11903 df-8 11904 df-9 11905 df-n0 12096 df-dec 12299 df-dp2 30871 df-dp 30888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |