| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| threehalves | ⊢ (3 / 2) = (1.5) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12202 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 2 | 2re 12196 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2ne0 12226 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 1, 2, 3 | redivcli 11885 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 5 | 4 | recni 11123 | . . 3 ⊢ (3 / 2) ∈ ℂ |
| 6 | 1nn0 12394 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 7 | 5re 12209 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 8 | dpcl 32866 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
| 10 | 9 | recni 11123 | . . 3 ⊢ (1.5) ∈ ℂ |
| 11 | 2cnne0 12327 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 12 | 5, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 13 | 5nn0 12398 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 14 | 3nn0 12396 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 15 | 0nn0 12393 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | eqid 2731 | . . . . . 6 ⊢ ;15 = ;15 | |
| 17 | df-2 12185 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 18 | 17 | oveq1i 7356 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
| 19 | 2p1e3 12259 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 20 | 18, 19 | eqtr3i 2756 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
| 21 | 5p5e10 12656 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
| 22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12640 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
| 23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32886 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
| 24 | 14 | dp0u 32876 | . . . 4 ⊢ (3.0) = 3 |
| 25 | 23, 24 | eqtri 2754 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
| 26 | 10 | times2i 12256 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
| 27 | 1 | recni 11123 | . . . 4 ⊢ 3 ∈ ℂ |
| 28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
| 29 | 27, 28, 3 | divcan1i 11862 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
| 30 | 25, 26, 29 | 3eqtr4ri 2765 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
| 31 | mulcan2 11752 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
| 32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
| 33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 / cdiv 11771 2c2 12177 3c3 12178 5c5 12180 ℕ0cn0 12378 ;cdc 12585 .cdp 32863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-dec 12586 df-dp2 32847 df-dp 32864 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |