| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| threehalves | ⊢ (3 / 2) = (1.5) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12325 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 2 | 2re 12319 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2ne0 12349 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 1, 2, 3 | redivcli 12013 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 5 | 4 | recni 11254 | . . 3 ⊢ (3 / 2) ∈ ℂ |
| 6 | 1nn0 12522 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 7 | 5re 12332 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 8 | dpcl 32870 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
| 10 | 9 | recni 11254 | . . 3 ⊢ (1.5) ∈ ℂ |
| 11 | 2cnne0 12455 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 12 | 5, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 13 | 5nn0 12526 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 14 | 3nn0 12524 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 15 | 0nn0 12521 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | eqid 2736 | . . . . . 6 ⊢ ;15 = ;15 | |
| 17 | df-2 12308 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 18 | 17 | oveq1i 7420 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
| 19 | 2p1e3 12387 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 20 | 18, 19 | eqtr3i 2761 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
| 21 | 5p5e10 12784 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
| 22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12768 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
| 23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32890 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
| 24 | 14 | dp0u 32880 | . . . 4 ⊢ (3.0) = 3 |
| 25 | 23, 24 | eqtri 2759 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
| 26 | 10 | times2i 12384 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
| 27 | 1 | recni 11254 | . . . 4 ⊢ 3 ∈ ℂ |
| 28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
| 29 | 27, 28, 3 | divcan1i 11990 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
| 30 | 25, 26, 29 | 3eqtr4ri 2770 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
| 31 | mulcan2 11880 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
| 32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
| 33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 / cdiv 11899 2c2 12300 3c3 12301 5c5 12303 ℕ0cn0 12506 ;cdc 12713 .cdp 32867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 df-dp2 32851 df-dp 32868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |