| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > threehalves | Structured version Visualization version GIF version | ||
| Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| Ref | Expression |
|---|---|
| threehalves | ⊢ (3 / 2) = (1.5) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 12226 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 2 | 2re 12220 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2ne0 12250 | . . . . 5 ⊢ 2 ≠ 0 | |
| 4 | 1, 2, 3 | redivcli 11909 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 5 | 4 | recni 11148 | . . 3 ⊢ (3 / 2) ∈ ℂ |
| 6 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 7 | 5re 12233 | . . . . 5 ⊢ 5 ∈ ℝ | |
| 8 | dpcl 32844 | . . . . 5 ⊢ ((1 ∈ ℕ0 ∧ 5 ∈ ℝ) → (1.5) ∈ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ (1.5) ∈ ℝ |
| 10 | 9 | recni 11148 | . . 3 ⊢ (1.5) ∈ ℂ |
| 11 | 2cnne0 12351 | . . 3 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 12 | 5, 10, 11 | 3pm3.2i 1340 | . 2 ⊢ ((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 13 | 5nn0 12422 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 14 | 3nn0 12420 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 15 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 16 | eqid 2729 | . . . . . 6 ⊢ ;15 = ;15 | |
| 17 | df-2 12209 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 18 | 17 | oveq1i 7363 | . . . . . . 7 ⊢ (2 + 1) = ((1 + 1) + 1) |
| 19 | 2p1e3 12283 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 20 | 18, 19 | eqtr3i 2754 | . . . . . 6 ⊢ ((1 + 1) + 1) = 3 |
| 21 | 5p5e10 12680 | . . . . . 6 ⊢ (5 + 5) = ;10 | |
| 22 | 6, 13, 6, 13, 16, 16, 20, 15, 21 | decaddc 12664 | . . . . 5 ⊢ (;15 + ;15) = ;30 |
| 23 | 6, 13, 6, 13, 14, 15, 22 | dpadd 32864 | . . . 4 ⊢ ((1.5) + (1.5)) = (3.0) |
| 24 | 14 | dp0u 32854 | . . . 4 ⊢ (3.0) = 3 |
| 25 | 23, 24 | eqtri 2752 | . . 3 ⊢ ((1.5) + (1.5)) = 3 |
| 26 | 10 | times2i 12280 | . . 3 ⊢ ((1.5) · 2) = ((1.5) + (1.5)) |
| 27 | 1 | recni 11148 | . . . 4 ⊢ 3 ∈ ℂ |
| 28 | 11 | simpli 483 | . . . 4 ⊢ 2 ∈ ℂ |
| 29 | 27, 28, 3 | divcan1i 11886 | . . 3 ⊢ ((3 / 2) · 2) = 3 |
| 30 | 25, 26, 29 | 3eqtr4ri 2763 | . 2 ⊢ ((3 / 2) · 2) = ((1.5) · 2) |
| 31 | mulcan2 11776 | . . 3 ⊢ (((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((3 / 2) · 2) = ((1.5) · 2) ↔ (3 / 2) = (1.5))) | |
| 32 | 31 | biimpa 476 | . 2 ⊢ ((((3 / 2) ∈ ℂ ∧ (1.5) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) ∧ ((3 / 2) · 2) = ((1.5) · 2)) → (3 / 2) = (1.5)) |
| 33 | 12, 30, 32 | mp2an 692 | 1 ⊢ (3 / 2) = (1.5) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 / cdiv 11795 2c2 12201 3c3 12202 5c5 12204 ℕ0cn0 12402 ;cdc 12609 .cdp 32841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 df-dp2 32825 df-dp 32842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |