| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version | ||
| Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3t2e6 | ⊢ (3 · 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12243 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 1 | times2i 12296 | . 2 ⊢ (3 · 2) = (3 + 3) |
| 3 | 3p3e6 12309 | . 2 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (3 · 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 + caddc 11047 · cmul 11049 2c2 12217 3c3 12218 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 3t3e9 12324 8th4div3 12378 halfthird 12379 fac3 14221 bpoly3 16000 bpoly4 16001 sin01bnd 16129 3lcm2e6woprm 16561 3lcm2e6 16678 prmo3 16988 2exp6 17033 6nprm 17056 7prm 17057 17prm 17063 37prm 17067 83prm 17069 163prm 17071 317prm 17072 631prm 17073 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem2 17084 4001lem1 17087 4001lem3 17089 4001prm 17091 sincos6thpi 26458 pigt3 26460 quart1 26799 log2ublem2 26890 log2ublem3 26891 log2ub 26892 basellem5 27028 basellem8 27031 cht3 27116 ppiublem1 27146 ppiub 27148 bclbnd 27224 bpos1 27227 bposlem8 27235 bposlem9 27236 2lgslem3d 27343 2lgsoddprmlem3d 27357 cos9thpiminplylem4 33768 cos9thpiminplylem5 33769 hgt750lem2 34636 problem4 35648 problem5 35649 3exp7 42034 3cubeslem3l 42667 3cubeslem3r 42668 lhe4.4ex1a 44311 stoweidlem13 46004 ceil5half3 47334 minusmodnep2tmod 47347 257prm 47555 127prm 47593 mod42tp1mod8 47596 6even 47705 2exp340mod341 47727 2t6m3t4e0 48329 zlmodzxzequa 48478 |
| Copyright terms: Public domain | W3C validator |