| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version | ||
| Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3t2e6 | ⊢ (3 · 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12206 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 1 | times2i 12259 | . 2 ⊢ (3 · 2) = (3 + 3) |
| 3 | 3p3e6 12272 | . 2 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ (3 · 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: 3t3e9 12287 8th4div3 12341 halfthird 12342 fac3 14187 bpoly3 15965 bpoly4 15966 sin01bnd 16094 3lcm2e6woprm 16526 3lcm2e6 16643 prmo3 16953 2exp6 16998 6nprm 17021 7prm 17022 17prm 17028 37prm 17032 83prm 17034 163prm 17036 317prm 17037 631prm 17038 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem2 17049 4001lem1 17052 4001lem3 17054 4001prm 17056 sincos6thpi 26452 pigt3 26454 quart1 26793 log2ublem2 26884 log2ublem3 26885 log2ub 26886 basellem5 27022 basellem8 27025 cht3 27110 ppiublem1 27140 ppiub 27142 bclbnd 27218 bpos1 27221 bposlem8 27229 bposlem9 27230 2lgslem3d 27337 2lgsoddprmlem3d 27351 cos9thpiminplylem4 33798 cos9thpiminplylem5 33799 hgt750lem2 34665 problem4 35712 problem5 35713 3exp7 42156 3cubeslem3l 42789 3cubeslem3r 42790 lhe4.4ex1a 44432 stoweidlem13 46121 ceil5half3 47450 minusmodnep2tmod 47463 257prm 47671 127prm 47709 mod42tp1mod8 47712 6even 47821 2exp340mod341 47843 2t6m3t4e0 48458 zlmodzxzequa 48607 |
| Copyright terms: Public domain | W3C validator |