| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version | ||
| Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3t2e6 | ⊢ (3 · 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12319 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 1 | times2i 12377 | . 2 ⊢ (3 · 2) = (3 + 3) |
| 3 | 3p3e6 12390 | . 2 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2758 | 1 ⊢ (3 · 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 + caddc 11130 · cmul 11132 2c2 12293 3c3 12294 6c6 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-1rid 11197 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 |
| This theorem is referenced by: 3t3e9 12405 8th4div3 12459 halfthird 12460 fac3 14296 bpoly3 16072 bpoly4 16073 sin01bnd 16201 3lcm2e6woprm 16632 3lcm2e6 16749 prmo3 17059 2exp6 17104 6nprm 17127 7prm 17128 17prm 17134 37prm 17138 83prm 17140 163prm 17142 317prm 17143 631prm 17144 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem2 17155 4001lem1 17158 4001lem3 17160 4001prm 17162 sincos6thpi 26475 pigt3 26477 quart1 26816 log2ublem2 26907 log2ublem3 26908 log2ub 26909 basellem5 27045 basellem8 27048 cht3 27133 ppiublem1 27163 ppiub 27165 bclbnd 27241 bpos1 27244 bposlem8 27252 bposlem9 27253 2lgslem3d 27360 2lgsoddprmlem3d 27374 cos9thpiminplylem4 33765 cos9thpiminplylem5 33766 hgt750lem2 34630 problem4 35636 problem5 35637 3exp7 42012 3cubeslem3l 42656 3cubeslem3r 42657 lhe4.4ex1a 44301 stoweidlem13 45990 ceil5half3 47317 minusmodnep2tmod 47330 257prm 47523 127prm 47561 mod42tp1mod8 47564 6even 47673 2exp340mod341 47695 2t6m3t4e0 48271 zlmodzxzequa 48420 |
| Copyright terms: Public domain | W3C validator |