| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version | ||
| Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3t2e6 | ⊢ (3 · 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12267 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 1 | times2i 12320 | . 2 ⊢ (3 · 2) = (3 + 3) |
| 3 | 3p3e6 12333 | . 2 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (3 · 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 + caddc 11071 · cmul 11073 2c2 12241 3c3 12242 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 3t3e9 12348 8th4div3 12402 halfthird 12403 fac3 14245 bpoly3 16024 bpoly4 16025 sin01bnd 16153 3lcm2e6woprm 16585 3lcm2e6 16702 prmo3 17012 2exp6 17057 6nprm 17080 7prm 17081 17prm 17087 37prm 17091 83prm 17093 163prm 17095 317prm 17096 631prm 17097 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem2 17108 4001lem1 17111 4001lem3 17113 4001prm 17115 sincos6thpi 26425 pigt3 26427 quart1 26766 log2ublem2 26857 log2ublem3 26858 log2ub 26859 basellem5 26995 basellem8 26998 cht3 27083 ppiublem1 27113 ppiub 27115 bclbnd 27191 bpos1 27194 bposlem8 27202 bposlem9 27203 2lgslem3d 27310 2lgsoddprmlem3d 27324 cos9thpiminplylem4 33775 cos9thpiminplylem5 33776 hgt750lem2 34643 problem4 35655 problem5 35656 3exp7 42041 3cubeslem3l 42674 3cubeslem3r 42675 lhe4.4ex1a 44318 stoweidlem13 46011 ceil5half3 47341 minusmodnep2tmod 47354 257prm 47562 127prm 47600 mod42tp1mod8 47603 6even 47712 2exp340mod341 47734 2t6m3t4e0 48336 zlmodzxzequa 48485 |
| Copyright terms: Public domain | W3C validator |