| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version | ||
| Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| 3t2e6 | ⊢ (3 · 2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12274 | . . 3 ⊢ 3 ∈ ℂ | |
| 2 | 1 | times2i 12327 | . 2 ⊢ (3 · 2) = (3 + 3) |
| 3 | 3p3e6 12340 | . 2 ⊢ (3 + 3) = 6 | |
| 4 | 2, 3 | eqtri 2753 | 1 ⊢ (3 · 2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 + caddc 11078 · cmul 11080 2c2 12248 3c3 12249 6c6 12252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 |
| This theorem is referenced by: 3t3e9 12355 8th4div3 12409 halfthird 12410 fac3 14252 bpoly3 16031 bpoly4 16032 sin01bnd 16160 3lcm2e6woprm 16592 3lcm2e6 16709 prmo3 17019 2exp6 17064 6nprm 17087 7prm 17088 17prm 17094 37prm 17098 83prm 17100 163prm 17102 317prm 17103 631prm 17104 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem2 17115 4001lem1 17118 4001lem3 17120 4001prm 17122 sincos6thpi 26432 pigt3 26434 quart1 26773 log2ublem2 26864 log2ublem3 26865 log2ub 26866 basellem5 27002 basellem8 27005 cht3 27090 ppiublem1 27120 ppiub 27122 bclbnd 27198 bpos1 27201 bposlem8 27209 bposlem9 27210 2lgslem3d 27317 2lgsoddprmlem3d 27331 cos9thpiminplylem4 33782 cos9thpiminplylem5 33783 hgt750lem2 34650 problem4 35662 problem5 35663 3exp7 42048 3cubeslem3l 42681 3cubeslem3r 42682 lhe4.4ex1a 44325 stoweidlem13 46018 ceil5half3 47345 minusmodnep2tmod 47358 257prm 47566 127prm 47604 mod42tp1mod8 47607 6even 47716 2exp340mod341 47738 2t6m3t4e0 48340 zlmodzxzequa 48489 |
| Copyright terms: Public domain | W3C validator |