Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3t2e6 | Structured version Visualization version GIF version |
Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
3t2e6 | ⊢ (3 · 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11984 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 1 | times2i 12042 | . 2 ⊢ (3 · 2) = (3 + 3) |
3 | 3p3e6 12055 | . 2 ⊢ (3 + 3) = 6 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (3 · 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 + caddc 10805 · cmul 10807 2c2 11958 3c3 11959 6c6 11962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 |
This theorem is referenced by: 3t3e9 12070 8th4div3 12123 halfpm6th 12124 halfthird 12509 fac3 13922 bpoly3 15696 bpoly4 15697 sin01bnd 15822 3lcm2e6woprm 16248 3lcm2e6 16364 prmo3 16670 2exp6 16716 6nprm 16739 7prm 16740 17prm 16746 37prm 16750 83prm 16752 163prm 16754 317prm 16755 631prm 16756 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem2 16767 4001lem1 16770 4001lem3 16772 4001prm 16774 sincos6thpi 25577 pigt3 25579 quart1 25911 log2ublem2 26002 log2ublem3 26003 log2ub 26004 basellem5 26139 basellem8 26142 cht3 26227 ppiublem1 26255 ppiub 26257 bclbnd 26333 bpos1 26336 bposlem8 26344 bposlem9 26345 2lgslem3d 26452 2lgsoddprmlem3d 26466 hgt750lem2 32532 problem4 33526 problem5 33527 3exp7 39989 3cubeslem3l 40424 3cubeslem3r 40425 lhe4.4ex1a 41836 stoweidlem13 43444 257prm 44901 127prm 44939 mod42tp1mod8 44942 6even 45051 2exp340mod341 45073 2t6m3t4e0 45572 zlmodzxzequa 45725 |
Copyright terms: Public domain | W3C validator |