![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > logi | Structured version Visualization version GIF version |
Description: Calculate the logarithm of i. (Contributed by Scott Fenton, 13-Apr-2020.) |
Ref | Expression |
---|---|
logi | ⊢ (log‘i) = (i · (π / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efhalfpi 25988 | . 2 ⊢ (exp‘(i · (π / 2))) = i | |
2 | ax-icn 11171 | . . 3 ⊢ i ∈ ℂ | |
3 | ine0 11651 | . . 3 ⊢ i ≠ 0 | |
4 | halfpire 25981 | . . . . . 6 ⊢ (π / 2) ∈ ℝ | |
5 | 4 | recni 11230 | . . . . 5 ⊢ (π / 2) ∈ ℂ |
6 | 2, 5 | mulcli 11223 | . . . 4 ⊢ (i · (π / 2)) ∈ ℂ |
7 | pipos 25977 | . . . . . . 7 ⊢ 0 < π | |
8 | pire 25975 | . . . . . . . 8 ⊢ π ∈ ℝ | |
9 | lt0neg2 11723 | . . . . . . . 8 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (0 < π ↔ -π < 0) |
11 | 7, 10 | mpbi 229 | . . . . . 6 ⊢ -π < 0 |
12 | halfpos2 12443 | . . . . . . . 8 ⊢ (π ∈ ℝ → (0 < π ↔ 0 < (π / 2))) | |
13 | 8, 12 | ax-mp 5 | . . . . . . 7 ⊢ (0 < π ↔ 0 < (π / 2)) |
14 | 7, 13 | mpbi 229 | . . . . . 6 ⊢ 0 < (π / 2) |
15 | 8 | renegcli 11523 | . . . . . . 7 ⊢ -π ∈ ℝ |
16 | 0re 11218 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
17 | 15, 16, 4 | lttri 11342 | . . . . . 6 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
18 | 11, 14, 17 | mp2an 690 | . . . . 5 ⊢ -π < (π / 2) |
19 | reim 15058 | . . . . . . 7 ⊢ ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))) | |
20 | 5, 19 | ax-mp 5 | . . . . . 6 ⊢ (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))) |
21 | rere 15071 | . . . . . . 7 ⊢ ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2)) | |
22 | 4, 21 | ax-mp 5 | . . . . . 6 ⊢ (ℜ‘(π / 2)) = (π / 2) |
23 | 20, 22 | eqtr3i 2762 | . . . . 5 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
24 | 18, 23 | breqtrri 5175 | . . . 4 ⊢ -π < (ℑ‘(i · (π / 2))) |
25 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (⊤ → π ∈ ℝ) |
26 | 25, 25 | ltaddposd 11800 | . . . . . . . . . 10 ⊢ (⊤ → (0 < π ↔ π < (π + π))) |
27 | 7, 26 | mpbii 232 | . . . . . . . . 9 ⊢ (⊤ → π < (π + π)) |
28 | picn 25976 | . . . . . . . . . 10 ⊢ π ∈ ℂ | |
29 | 28 | times2i 12353 | . . . . . . . . 9 ⊢ (π · 2) = (π + π) |
30 | 27, 29 | breqtrrdi 5190 | . . . . . . . 8 ⊢ (⊤ → π < (π · 2)) |
31 | 2rp 12981 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ+ | |
32 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 2 ∈ ℝ+) |
33 | 25, 25, 32 | ltdivmul2d 13070 | . . . . . . . 8 ⊢ (⊤ → ((π / 2) < π ↔ π < (π · 2))) |
34 | 30, 33 | mpbird 256 | . . . . . . 7 ⊢ (⊤ → (π / 2) < π) |
35 | 34 | mptru 1548 | . . . . . 6 ⊢ (π / 2) < π |
36 | 4, 8, 35 | ltleii 11339 | . . . . 5 ⊢ (π / 2) ≤ π |
37 | 23, 36 | eqbrtri 5169 | . . . 4 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
38 | ellogrn 26075 | . . . 4 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
39 | 6, 24, 37, 38 | mpbir3an 1341 | . . 3 ⊢ (i · (π / 2)) ∈ ran log |
40 | logeftb 26099 | . . 3 ⊢ ((i ∈ ℂ ∧ i ≠ 0 ∧ (i · (π / 2)) ∈ ran log) → ((log‘i) = (i · (π / 2)) ↔ (exp‘(i · (π / 2))) = i)) | |
41 | 2, 3, 39, 40 | mp3an 1461 | . 2 ⊢ ((log‘i) = (i · (π / 2)) ↔ (exp‘(i · (π / 2))) = i) |
42 | 1, 41 | mpbir 230 | 1 ⊢ (log‘i) = (i · (π / 2)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 ran crn 5677 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 ici 11114 + caddc 11115 · cmul 11117 < clt 11250 ≤ cle 11251 -cneg 11447 / cdiv 11873 2c2 12269 ℝ+crp 12976 ℜcre 15046 ℑcim 15047 expce 16007 πcpi 16012 logclog 26070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-q 12935 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-ioo 13330 df-ioc 13331 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-fl 13759 df-mod 13837 df-seq 13969 df-exp 14030 df-fac 14236 df-bc 14265 df-hash 14293 df-shft 15016 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-limsup 15417 df-clim 15434 df-rlim 15435 df-sum 15635 df-ef 16013 df-sin 16015 df-cos 16016 df-pi 16018 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-hom 17223 df-cco 17224 df-rest 17370 df-topn 17371 df-0g 17389 df-gsum 17390 df-topgen 17391 df-pt 17392 df-prds 17395 df-xrs 17450 df-qtop 17455 df-imas 17456 df-xps 17458 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-submnd 18674 df-mulg 18953 df-cntz 19183 df-cmn 19652 df-psmet 20942 df-xmet 20943 df-met 20944 df-bl 20945 df-mopn 20946 df-fbas 20947 df-fg 20948 df-cnfld 20951 df-top 22403 df-topon 22420 df-topsp 22442 df-bases 22456 df-cld 22530 df-ntr 22531 df-cls 22532 df-nei 22609 df-lp 22647 df-perf 22648 df-cn 22738 df-cnp 22739 df-haus 22826 df-tx 23073 df-hmeo 23266 df-fil 23357 df-fm 23449 df-flim 23450 df-flf 23451 df-xms 23833 df-ms 23834 df-tms 23835 df-cncf 24401 df-limc 25390 df-dv 25391 df-log 26072 |
This theorem is referenced by: iexpire 34780 |
Copyright terms: Public domain | W3C validator |