Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . 5
⊢ ((((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧
((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) = 𝑝) |
2 | | simpl 486 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝐷 ∈ Fin) |
3 | | eqid 2758 |
. . . . . . . . 9
⊢
(toCyc‘𝐷) =
(toCyc‘𝐷) |
4 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) |
5 | 4 | elin1d 4105 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
6 | | elrabi 3598 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢 ∈ Word 𝐷) |
8 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) |
9 | | dmeq 5749 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) |
10 | | eqidd 2759 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) |
11 | 8, 9, 10 | f1eq123d 6599 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
12 | 11 | elrab 3604 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
13 | 12 | simprbi 500 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
14 | 5, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢:dom 𝑢–1-1→𝐷) |
15 | | eqid 2758 |
. . . . . . . . 9
⊢
(SymGrp‘𝐷) =
(SymGrp‘𝐷) |
16 | 3, 2, 7, 14, 15 | cycpmcl 30921 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷))) |
17 | | c0ex 10686 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
18 | 17 | tpid1 4664 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
{0, 1, 2} |
19 | | fzo0to3tp 13185 |
. . . . . . . . . . . . . . . . 17
⊢ (0..^3) =
{0, 1, 2} |
20 | 18, 19 | eleqtrri 2851 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
(0..^3) |
21 | 4 | elin2d 4106 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢 ∈ (◡♯ “ {3})) |
22 | | hashf 13761 |
. . . . . . . . . . . . . . . . . . . 20
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
23 | | ffn 6503 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → ♯
Fn V) |
24 | | elpreima 6824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (♯
Fn V → (𝑢 ∈
(◡♯ “ {3}) ↔ (𝑢 ∈ V ∧
(♯‘𝑢) ∈
{3}))) |
25 | 22, 23, 24 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (◡♯ “ {3}) ↔ (𝑢 ∈ V ∧
(♯‘𝑢) ∈
{3})) |
26 | 25 | simprbi 500 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (◡♯ “ {3}) →
(♯‘𝑢) ∈
{3}) |
27 | | elsni 4542 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑢)
∈ {3} → (♯‘𝑢) = 3) |
28 | 21, 26, 27 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
(♯‘𝑢) =
3) |
29 | 28 | oveq2d 7172 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
(0..^(♯‘𝑢)) =
(0..^3)) |
30 | 20, 29 | eleqtrrid 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 0 ∈
(0..^(♯‘𝑢))) |
31 | | wrdsymbcl 13939 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘𝑢))) → (𝑢‘0) ∈ 𝐷) |
32 | 7, 30, 31 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘0) ∈ 𝐷) |
33 | | 1ex 10688 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
V |
34 | 33 | tpid2 4666 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
{0, 1, 2} |
35 | 34, 19 | eleqtrri 2851 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
(0..^3) |
36 | 35, 29 | eleqtrrid 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 1 ∈
(0..^(♯‘𝑢))) |
37 | | wrdsymbcl 13939 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Word 𝐷 ∧ 1 ∈ (0..^(♯‘𝑢))) → (𝑢‘1) ∈ 𝐷) |
38 | 7, 36, 37 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘1) ∈ 𝐷) |
39 | | 2ex 11764 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
V |
40 | 39 | tpid3 4669 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
{0, 1, 2} |
41 | 40, 19 | eleqtrri 2851 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
(0..^3) |
42 | 41, 29 | eleqtrrid 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 2 ∈
(0..^(♯‘𝑢))) |
43 | | wrdsymbcl 13939 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ Word 𝐷 ∧ 2 ∈ (0..^(♯‘𝑢))) → (𝑢‘2) ∈ 𝐷) |
44 | 7, 42, 43 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘2) ∈ 𝐷) |
45 | 32, 38, 44 | 3jca 1125 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) |
46 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘0) = (𝑢‘0)) |
47 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘1) = (𝑢‘1)) |
48 | | eqidd 2759 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘2) = (𝑢‘2)) |
49 | 46, 47, 48 | 3jca 1125 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2))) |
50 | | eqwrds3 14385 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) → (𝑢 = 〈“(𝑢‘0)(𝑢‘1)(𝑢‘2)”〉 ↔
((♯‘𝑢) = 3
∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2))))) |
51 | 50 | biimpar 481 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) ∧ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))) → 𝑢 = 〈“(𝑢‘0)(𝑢‘1)(𝑢‘2)”〉) |
52 | 7, 45, 28, 49, 51 | syl22anc 837 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢 = 〈“(𝑢‘0)(𝑢‘1)(𝑢‘2)”〉) |
53 | 52 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘𝑢) = ((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)(𝑢‘2)”〉)) |
54 | | wrddm 13933 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢))) |
55 | 7, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → dom 𝑢 = (0..^(♯‘𝑢))) |
56 | 55, 29 | eqtrd 2793 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → dom 𝑢 = (0..^3)) |
57 | 56, 19 | eqtrdi 2809 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → dom 𝑢 = {0, 1, 2}) |
58 | | f1eq2 6561 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑢 = {0, 1, 2} → (𝑢:dom 𝑢–1-1→𝐷 ↔ 𝑢:{0, 1, 2}–1-1→𝐷)) |
59 | 58 | biimpa 480 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑢 = {0, 1, 2} ∧ 𝑢:dom 𝑢–1-1→𝐷) → 𝑢:{0, 1, 2}–1-1→𝐷) |
60 | 57, 14, 59 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → 𝑢:{0, 1, 2}–1-1→𝐷) |
61 | 17, 33, 39 | 3pm3.2i 1336 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
V ∧ 1 ∈ V ∧ 2 ∈ V) |
62 | | 0ne1 11758 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
1 |
63 | | 0ne2 11894 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
2 |
64 | | 1ne2 11895 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
2 |
65 | 62, 63, 64 | 3pm3.2i 1336 |
. . . . . . . . . . . . . . . 16
⊢ (0 ≠ 1
∧ 0 ≠ 2 ∧ 1 ≠ 2) |
66 | | eqid 2758 |
. . . . . . . . . . . . . . . . 17
⊢ {0, 1, 2}
= {0, 1, 2} |
67 | 66 | f13dfv 7029 |
. . . . . . . . . . . . . . . 16
⊢ (((0
∈ V ∧ 1 ∈ V ∧ 2 ∈ V) ∧ (0 ≠ 1 ∧ 0 ≠ 2
∧ 1 ≠ 2)) → (𝑢:{0, 1, 2}–1-1→𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))))) |
68 | 61, 65, 67 | mp2an 691 |
. . . . . . . . . . . . . . 15
⊢ (𝑢:{0, 1, 2}–1-1→𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))) |
69 | 68 | simprbi 500 |
. . . . . . . . . . . . . 14
⊢ (𝑢:{0, 1, 2}–1-1→𝐷 → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))) |
70 | 60, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))) |
71 | 70 | simp1d 1139 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘1)) |
72 | 70 | simp3d 1141 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘1) ≠ (𝑢‘2)) |
73 | 70 | simp2d 1140 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘2)) |
74 | 73 | necomd 3006 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → (𝑢‘2) ≠ (𝑢‘0)) |
75 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(+g‘(SymGrp‘𝐷)) =
(+g‘(SymGrp‘𝐷)) |
76 | 3, 15, 2, 32, 38, 44, 71, 72, 74, 75 | cyc3co2 30945 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)(𝑢‘2)”〉) =
(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) |
77 | 3, 2, 32, 44, 73, 15 | cycpm2cl 30925 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∈
(Base‘(SymGrp‘𝐷))) |
78 | 3, 2, 32, 38, 71, 15 | cycpm2cl 30925 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) ∈
(Base‘(SymGrp‘𝐷))) |
79 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
(Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷)) |
80 | 15, 79, 75 | symgov 18592 |
. . . . . . . . . . . 12
⊢
((((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∈
(Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) ∈
(Base‘(SymGrp‘𝐷))) → (((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)) = (((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘ ((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) |
81 | 77, 78, 80 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)) = (((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘ ((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) |
82 | 53, 76, 81 | 3eqtrd 2797 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘𝑢) = (((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) |
83 | 82 | fveq2d 6667 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)))) |
84 | | eqid 2758 |
. . . . . . . . . . 11
⊢
(pmSgn‘𝐷) =
(pmSgn‘𝐷) |
85 | 15, 84, 79 | psgnco 20361 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∈
(Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) ∈
(Base‘(SymGrp‘𝐷))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) =
(((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) ·
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)))) |
86 | 2, 77, 78, 85 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∘
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) =
(((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) ·
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)))) |
87 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢
(pmTrsp‘𝐷) =
(pmTrsp‘𝐷) |
88 | 3, 2, 32, 44, 73, 87 | cycpm2tr 30924 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) =
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)})) |
89 | 32, 44 | prssd 4715 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷) |
90 | | pr2nelem 9477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘2)) → {(𝑢‘0), (𝑢‘2)} ≈
2o) |
91 | 32, 44, 73, 90 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ≈
2o) |
92 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢ ran
(pmTrsp‘𝐷) = ran
(pmTrsp‘𝐷) |
93 | 87, 92 | pmtrrn 18665 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘2)} ≈ 2o) →
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷)) |
94 | 2, 89, 91, 93 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷)) |
95 | 88, 94 | eqeltrd 2852 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∈ ran
(pmTrsp‘𝐷)) |
96 | 15, 92, 84 | psgnpmtr 18718 |
. . . . . . . . . . . 12
⊢
(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉) ∈ ran
(pmTrsp‘𝐷) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) =
-1) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) =
-1) |
98 | 3, 2, 32, 38, 71, 87 | cycpm2tr 30924 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) =
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)})) |
99 | 32, 38 | prssd 4715 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷) |
100 | | pr2nelem 9477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘1)) → {(𝑢‘0), (𝑢‘1)} ≈
2o) |
101 | 32, 38, 71, 100 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ≈
2o) |
102 | 87, 92 | pmtrrn 18665 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘1)} ≈ 2o) →
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷)) |
103 | 2, 99, 101, 102 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷)) |
104 | 98, 103 | eqeltrd 2852 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) ∈ ran
(pmTrsp‘𝐷)) |
105 | 15, 92, 84 | psgnpmtr 18718 |
. . . . . . . . . . . 12
⊢
(((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉) ∈ ran
(pmTrsp‘𝐷) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)) =
-1) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉)) =
-1) |
107 | 97, 106 | oveq12d 7174 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
(((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) ·
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) = (-1 ·
-1)) |
108 | | neg1mulneg1e1 11900 |
. . . . . . . . . 10
⊢ (-1
· -1) = 1 |
109 | 107, 108 | eqtrdi 2809 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
(((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘2)”〉)) ·
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘〈“(𝑢‘0)(𝑢‘1)”〉))) =
1) |
110 | 83, 86, 109 | 3eqtrd 2797 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1) |
111 | 15, 79, 84 | psgnevpmb 20365 |
. . . . . . . . 9
⊢ (𝐷 ∈ Fin →
(((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷) ↔ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1))) |
112 | 111 | biimpar 481 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧
(((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷)) |
113 | 2, 16, 110, 112 | syl12anc 835 |
. . . . . . 7
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷)) |
114 | | cyc3evpm.a |
. . . . . . 7
⊢ 𝐴 = (pmEven‘𝐷) |
115 | 113, 114 | eleqtrrdi 2863 |
. . . . . 6
⊢ ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) →
((toCyc‘𝐷)‘𝑢) ∈ 𝐴) |
116 | 115 | ad4ant13 750 |
. . . . 5
⊢ ((((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧
((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴) |
117 | 1, 116 | eqeltrrd 2853 |
. . . 4
⊢ ((((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))) ∧
((toCyc‘𝐷)‘𝑢) = 𝑝) → 𝑝 ∈ 𝐴) |
118 | | nfcv 2919 |
. . . . 5
⊢
Ⅎ𝑢(toCyc‘𝐷) |
119 | 3, 15, 79 | tocycf 30922 |
. . . . . . 7
⊢ (𝐷 ∈ Fin →
(toCyc‘𝐷):{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘(SymGrp‘𝐷))) |
120 | 119 | ffnd 6504 |
. . . . . 6
⊢ (𝐷 ∈ Fin →
(toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
121 | 120 | adantr 484 |
. . . . 5
⊢ ((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
122 | | simpr 488 |
. . . . . 6
⊢ ((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐶) |
123 | | cyc3evpm.t |
. . . . . 6
⊢ 𝐶 = ((toCyc‘𝐷) “ (◡♯ “ {3})) |
124 | 122, 123 | eleqtrdi 2862 |
. . . . 5
⊢ ((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ ((toCyc‘𝐷) “ (◡♯ “ {3}))) |
125 | 118, 121,
124 | fvelimad 6725 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {3}))((toCyc‘𝐷)‘𝑢) = 𝑝) |
126 | 117, 125 | r19.29a 3213 |
. . 3
⊢ ((𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐴) |
127 | 126 | ex 416 |
. 2
⊢ (𝐷 ∈ Fin → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐴)) |
128 | 127 | ssrdv 3900 |
1
⊢ (𝐷 ∈ Fin → 𝐶 ⊆ 𝐴) |