Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3evpm Structured version   Visualization version   GIF version

Theorem cyc3evpm 31417
Description: 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3evpm.t 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
cyc3evpm.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
cyc3evpm (𝐷 ∈ Fin → 𝐶𝐴)

Proof of Theorem cyc3evpm
Dummy variables 𝑝 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) = 𝑝)
2 simpl 483 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝐷 ∈ Fin)
3 eqid 2738 . . . . . . . . 9 (toCyc‘𝐷) = (toCyc‘𝐷)
4 simpr 485 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3})))
54elin1d 4132 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
6 elrabi 3618 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢 ∈ Word 𝐷)
75, 6syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ Word 𝐷)
8 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝑤 = 𝑢)
9 dmeq 5812 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
10 eqidd 2739 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝐷 = 𝐷)
118, 9, 10f1eq123d 6708 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
1211elrab 3624 . . . . . . . . . . 11 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
1312simprbi 497 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢:dom 𝑢1-1𝐷)
145, 13syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:dom 𝑢1-1𝐷)
15 eqid 2738 . . . . . . . . 9 (SymGrp‘𝐷) = (SymGrp‘𝐷)
163, 2, 7, 14, 15cycpmcl 31383 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)))
17 c0ex 10969 . . . . . . . . . . . . . . . . . 18 0 ∈ V
1817tpid1 4704 . . . . . . . . . . . . . . . . 17 0 ∈ {0, 1, 2}
19 fzo0to3tp 13473 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
2018, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 0 ∈ (0..^3)
214elin2d 4133 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ (♯ “ {3}))
22 hashf 14052 . . . . . . . . . . . . . . . . . . . 20 ♯:V⟶(ℕ0 ∪ {+∞})
23 ffn 6600 . . . . . . . . . . . . . . . . . . . 20 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
24 elpreima 6935 . . . . . . . . . . . . . . . . . . . 20 (♯ Fn V → (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3})))
2522, 23, 24mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3}))
2625simprbi 497 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (♯ “ {3}) → (♯‘𝑢) ∈ {3})
27 elsni 4578 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑢) ∈ {3} → (♯‘𝑢) = 3)
2821, 26, 273syl 18 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (♯‘𝑢) = 3)
2928oveq2d 7291 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (0..^(♯‘𝑢)) = (0..^3))
3020, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 0 ∈ (0..^(♯‘𝑢)))
31 wrdsymbcl 14230 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘𝑢))) → (𝑢‘0) ∈ 𝐷)
327, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ∈ 𝐷)
33 1ex 10971 . . . . . . . . . . . . . . . . . 18 1 ∈ V
3433tpid2 4706 . . . . . . . . . . . . . . . . 17 1 ∈ {0, 1, 2}
3534, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 1 ∈ (0..^3)
3635, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 1 ∈ (0..^(♯‘𝑢)))
37 wrdsymbcl 14230 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 1 ∈ (0..^(♯‘𝑢))) → (𝑢‘1) ∈ 𝐷)
387, 36, 37syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ∈ 𝐷)
39 2ex 12050 . . . . . . . . . . . . . . . . . 18 2 ∈ V
4039tpid3 4709 . . . . . . . . . . . . . . . . 17 2 ∈ {0, 1, 2}
4140, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 2 ∈ (0..^3)
4241, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 2 ∈ (0..^(♯‘𝑢)))
43 wrdsymbcl 14230 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 2 ∈ (0..^(♯‘𝑢))) → (𝑢‘2) ∈ 𝐷)
447, 42, 43syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ∈ 𝐷)
4532, 38, 443jca 1127 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷))
46 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) = (𝑢‘0))
47 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) = (𝑢‘1))
48 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) = (𝑢‘2))
4946, 47, 483jca 1127 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))
50 eqwrds3 14676 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) → (𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩ ↔ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))))
5150biimpar 478 . . . . . . . . . . . . 13 (((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) ∧ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
527, 45, 28, 49, 51syl22anc 836 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
5352fveq2d 6778 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩))
54 wrddm 14224 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢)))
557, 54syl 17 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^(♯‘𝑢)))
5655, 29eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^3))
5756, 19eqtrdi 2794 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = {0, 1, 2})
58 f1eq2 6666 . . . . . . . . . . . . . . . 16 (dom 𝑢 = {0, 1, 2} → (𝑢:dom 𝑢1-1𝐷𝑢:{0, 1, 2}–1-1𝐷))
5958biimpa 477 . . . . . . . . . . . . . . 15 ((dom 𝑢 = {0, 1, 2} ∧ 𝑢:dom 𝑢1-1𝐷) → 𝑢:{0, 1, 2}–1-1𝐷)
6057, 14, 59syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:{0, 1, 2}–1-1𝐷)
6117, 33, 393pm3.2i 1338 . . . . . . . . . . . . . . . 16 (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V)
62 0ne1 12044 . . . . . . . . . . . . . . . . 17 0 ≠ 1
63 0ne2 12180 . . . . . . . . . . . . . . . . 17 0 ≠ 2
64 1ne2 12181 . . . . . . . . . . . . . . . . 17 1 ≠ 2
6562, 63, 643pm3.2i 1338 . . . . . . . . . . . . . . . 16 (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)
66 eqid 2738 . . . . . . . . . . . . . . . . 17 {0, 1, 2} = {0, 1, 2}
6766f13dfv 7146 . . . . . . . . . . . . . . . 16 (((0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))))
6861, 65, 67mp2an 689 . . . . . . . . . . . . . . 15 (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))))
6968simprbi 497 . . . . . . . . . . . . . 14 (𝑢:{0, 1, 2}–1-1𝐷 → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7060, 69syl 17 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7170simp1d 1141 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘1))
7270simp3d 1143 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ≠ (𝑢‘2))
7370simp2d 1142 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘2))
7473necomd 2999 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ≠ (𝑢‘0))
75 eqid 2738 . . . . . . . . . . . 12 (+g‘(SymGrp‘𝐷)) = (+g‘(SymGrp‘𝐷))
763, 15, 2, 32, 38, 44, 71, 72, 74, 75cyc3co2 31407 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
773, 2, 32, 44, 73, 15cycpm2cl 31387 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
783, 2, 32, 38, 71, 15cycpm2cl 31387 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
79 eqid 2738 . . . . . . . . . . . . 13 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
8015, 79, 75symgov 18991 . . . . . . . . . . . 12 ((((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8177, 78, 80syl2anc 584 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8253, 76, 813eqtrd 2782 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8382fveq2d 6778 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
84 eqid 2738 . . . . . . . . . . 11 (pmSgn‘𝐷) = (pmSgn‘𝐷)
8515, 84, 79psgnco 20788 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
862, 77, 78, 85syl3anc 1370 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
87 eqid 2738 . . . . . . . . . . . . . 14 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 2, 32, 44, 73, 87cycpm2tr 31386 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}))
8932, 44prssd 4755 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷)
90 pr2nelem 9760 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘2)) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
9132, 44, 73, 90syl3anc 1370 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
92 eqid 2738 . . . . . . . . . . . . . . 15 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
9387, 92pmtrrn 19065 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘2)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
942, 89, 91, 93syl3anc 1370 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
9588, 94eqeltrd 2839 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷))
9615, 92, 84psgnpmtr 19118 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
9795, 96syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
983, 2, 32, 38, 71, 87cycpm2tr 31386 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}))
9932, 38prssd 4755 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷)
100 pr2nelem 9760 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘1)) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10132, 38, 71, 100syl3anc 1370 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10287, 92pmtrrn 19065 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘1)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
1032, 99, 101, 102syl3anc 1370 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
10498, 103eqeltrd 2839 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷))
10515, 92, 84psgnpmtr 19118 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
106104, 105syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
10797, 106oveq12d 7293 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (-1 · -1))
108 neg1mulneg1e1 12186 . . . . . . . . . 10 (-1 · -1) = 1
109107, 108eqtrdi 2794 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = 1)
11083, 86, 1093eqtrd 2782 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)
11115, 79, 84psgnevpmb 20792 . . . . . . . . 9 (𝐷 ∈ Fin → (((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷) ↔ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)))
112111biimpar 478 . . . . . . . 8 ((𝐷 ∈ Fin ∧ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
1132, 16, 110, 112syl12anc 834 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
114 cyc3evpm.a . . . . . . 7 𝐴 = (pmEven‘𝐷)
115113, 114eleqtrrdi 2850 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
116115ad4ant13 748 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
1171, 116eqeltrrd 2840 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → 𝑝𝐴)
118 nfcv 2907 . . . . 5 𝑢(toCyc‘𝐷)
1193, 15, 79tocycf 31384 . . . . . . 7 (𝐷 ∈ Fin → (toCyc‘𝐷):{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
120119ffnd 6601 . . . . . 6 (𝐷 ∈ Fin → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
121120adantr 481 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
122 simpr 485 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐶)
123 cyc3evpm.t . . . . . 6 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
124122, 123eleqtrdi 2849 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝 ∈ ((toCyc‘𝐷) “ (♯ “ {3})))
125118, 121, 124fvelimad 6836 . . . 4 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))((toCyc‘𝐷)‘𝑢) = 𝑝)
126117, 125r19.29a 3218 . . 3 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐴)
127126ex 413 . 2 (𝐷 ∈ Fin → (𝑝𝐶𝑝𝐴))
128127ssrdv 3927 1 (𝐷 ∈ Fin → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cun 3885  cin 3886  wss 3887  {csn 4561  {cpr 4563  {ctp 4565   class class class wbr 5074  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  2oc2o 8291  cen 8730  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  +∞cpnf 11006  -cneg 11206  2c2 12028  3c3 12029  0cn0 12233  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs2 14554  ⟨“cs3 14555  Basecbs 16912  +gcplusg 16962  SymGrpcsymg 18974  pmTrspcpmtr 19049  pmSgncpsgn 19097  pmEvencevpm 19098  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-csh 14502  df-s2 14561  df-s3 14562  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-subg 18752  df-ghm 18832  df-gim 18875  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-evpm 19100  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-cnfld 20598  df-tocyc 31374
This theorem is referenced by:  cyc3genpm  31419
  Copyright terms: Public domain W3C validator