Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3evpm Structured version   Visualization version   GIF version

Theorem cyc3evpm 33105
Description: 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3evpm.t 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
cyc3evpm.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
cyc3evpm (𝐷 ∈ Fin → 𝐶𝐴)

Proof of Theorem cyc3evpm
Dummy variables 𝑝 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) = 𝑝)
2 simpl 482 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝐷 ∈ Fin)
3 eqid 2729 . . . . . . . . 9 (toCyc‘𝐷) = (toCyc‘𝐷)
4 simpr 484 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3})))
54elin1d 4157 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
6 elrabi 3645 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢 ∈ Word 𝐷)
75, 6syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ Word 𝐷)
8 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝑤 = 𝑢)
9 dmeq 5850 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
10 eqidd 2730 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝐷 = 𝐷)
118, 9, 10f1eq123d 6760 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
1211elrab 3650 . . . . . . . . . . 11 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
1312simprbi 496 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢:dom 𝑢1-1𝐷)
145, 13syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:dom 𝑢1-1𝐷)
15 eqid 2729 . . . . . . . . 9 (SymGrp‘𝐷) = (SymGrp‘𝐷)
163, 2, 7, 14, 15cycpmcl 33071 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)))
17 c0ex 11128 . . . . . . . . . . . . . . . . . 18 0 ∈ V
1817tpid1 4722 . . . . . . . . . . . . . . . . 17 0 ∈ {0, 1, 2}
19 fzo0to3tp 13673 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
2018, 19eleqtrri 2827 . . . . . . . . . . . . . . . 16 0 ∈ (0..^3)
214elin2d 4158 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ (♯ “ {3}))
22 hashf 14263 . . . . . . . . . . . . . . . . . . . 20 ♯:V⟶(ℕ0 ∪ {+∞})
23 ffn 6656 . . . . . . . . . . . . . . . . . . . 20 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
24 elpreima 6996 . . . . . . . . . . . . . . . . . . . 20 (♯ Fn V → (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3})))
2522, 23, 24mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3}))
2625simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (♯ “ {3}) → (♯‘𝑢) ∈ {3})
27 elsni 4596 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑢) ∈ {3} → (♯‘𝑢) = 3)
2821, 26, 273syl 18 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (♯‘𝑢) = 3)
2928oveq2d 7369 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (0..^(♯‘𝑢)) = (0..^3))
3020, 29eleqtrrid 2835 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 0 ∈ (0..^(♯‘𝑢)))
31 wrdsymbcl 14452 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘𝑢))) → (𝑢‘0) ∈ 𝐷)
327, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ∈ 𝐷)
33 1ex 11130 . . . . . . . . . . . . . . . . . 18 1 ∈ V
3433tpid2 4724 . . . . . . . . . . . . . . . . 17 1 ∈ {0, 1, 2}
3534, 19eleqtrri 2827 . . . . . . . . . . . . . . . 16 1 ∈ (0..^3)
3635, 29eleqtrrid 2835 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 1 ∈ (0..^(♯‘𝑢)))
37 wrdsymbcl 14452 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 1 ∈ (0..^(♯‘𝑢))) → (𝑢‘1) ∈ 𝐷)
387, 36, 37syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ∈ 𝐷)
39 2ex 12223 . . . . . . . . . . . . . . . . . 18 2 ∈ V
4039tpid3 4727 . . . . . . . . . . . . . . . . 17 2 ∈ {0, 1, 2}
4140, 19eleqtrri 2827 . . . . . . . . . . . . . . . 16 2 ∈ (0..^3)
4241, 29eleqtrrid 2835 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 2 ∈ (0..^(♯‘𝑢)))
43 wrdsymbcl 14452 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 2 ∈ (0..^(♯‘𝑢))) → (𝑢‘2) ∈ 𝐷)
447, 42, 43syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ∈ 𝐷)
4532, 38, 443jca 1128 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷))
46 eqidd 2730 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) = (𝑢‘0))
47 eqidd 2730 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) = (𝑢‘1))
48 eqidd 2730 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) = (𝑢‘2))
4946, 47, 483jca 1128 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))
50 eqwrds3 14886 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) → (𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩ ↔ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))))
5150biimpar 477 . . . . . . . . . . . . 13 (((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) ∧ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
527, 45, 28, 49, 51syl22anc 838 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
5352fveq2d 6830 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩))
54 wrddm 14446 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢)))
557, 54syl 17 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^(♯‘𝑢)))
5655, 29eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^3))
5756, 19eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = {0, 1, 2})
58 f1eq2 6720 . . . . . . . . . . . . . . . 16 (dom 𝑢 = {0, 1, 2} → (𝑢:dom 𝑢1-1𝐷𝑢:{0, 1, 2}–1-1𝐷))
5958biimpa 476 . . . . . . . . . . . . . . 15 ((dom 𝑢 = {0, 1, 2} ∧ 𝑢:dom 𝑢1-1𝐷) → 𝑢:{0, 1, 2}–1-1𝐷)
6057, 14, 59syl2anc 584 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:{0, 1, 2}–1-1𝐷)
6117, 33, 393pm3.2i 1340 . . . . . . . . . . . . . . . 16 (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V)
62 0ne1 12217 . . . . . . . . . . . . . . . . 17 0 ≠ 1
63 0ne2 12348 . . . . . . . . . . . . . . . . 17 0 ≠ 2
64 1ne2 12349 . . . . . . . . . . . . . . . . 17 1 ≠ 2
6562, 63, 643pm3.2i 1340 . . . . . . . . . . . . . . . 16 (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)
66 eqid 2729 . . . . . . . . . . . . . . . . 17 {0, 1, 2} = {0, 1, 2}
6766f13dfv 7215 . . . . . . . . . . . . . . . 16 (((0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))))
6861, 65, 67mp2an 692 . . . . . . . . . . . . . . 15 (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))))
6968simprbi 496 . . . . . . . . . . . . . 14 (𝑢:{0, 1, 2}–1-1𝐷 → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7060, 69syl 17 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7170simp1d 1142 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘1))
7270simp3d 1144 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ≠ (𝑢‘2))
7370simp2d 1143 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘2))
7473necomd 2980 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ≠ (𝑢‘0))
75 eqid 2729 . . . . . . . . . . . 12 (+g‘(SymGrp‘𝐷)) = (+g‘(SymGrp‘𝐷))
763, 15, 2, 32, 38, 44, 71, 72, 74, 75cyc3co2 33095 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
773, 2, 32, 44, 73, 15cycpm2cl 33075 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
783, 2, 32, 38, 71, 15cycpm2cl 33075 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
79 eqid 2729 . . . . . . . . . . . . 13 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
8015, 79, 75symgov 19281 . . . . . . . . . . . 12 ((((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8177, 78, 80syl2anc 584 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8253, 76, 813eqtrd 2768 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8382fveq2d 6830 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
84 eqid 2729 . . . . . . . . . . 11 (pmSgn‘𝐷) = (pmSgn‘𝐷)
8515, 84, 79psgnco 21508 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
862, 77, 78, 85syl3anc 1373 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
87 eqid 2729 . . . . . . . . . . . . . 14 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 2, 32, 44, 73, 87cycpm2tr 33074 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}))
8932, 44prssd 4776 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷)
90 enpr2 9917 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘2)) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
9132, 44, 73, 90syl3anc 1373 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
92 eqid 2729 . . . . . . . . . . . . . . 15 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
9387, 92pmtrrn 19354 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘2)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
942, 89, 91, 93syl3anc 1373 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
9588, 94eqeltrd 2828 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷))
9615, 92, 84psgnpmtr 19407 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
9795, 96syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
983, 2, 32, 38, 71, 87cycpm2tr 33074 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}))
9932, 38prssd 4776 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷)
100 enpr2 9917 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘1)) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10132, 38, 71, 100syl3anc 1373 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10287, 92pmtrrn 19354 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘1)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
1032, 99, 101, 102syl3anc 1373 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
10498, 103eqeltrd 2828 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷))
10515, 92, 84psgnpmtr 19407 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
106104, 105syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
10797, 106oveq12d 7371 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (-1 · -1))
108 neg1mulneg1e1 12354 . . . . . . . . . 10 (-1 · -1) = 1
109107, 108eqtrdi 2780 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = 1)
11083, 86, 1093eqtrd 2768 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)
11115, 79, 84psgnevpmb 21512 . . . . . . . . 9 (𝐷 ∈ Fin → (((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷) ↔ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)))
112111biimpar 477 . . . . . . . 8 ((𝐷 ∈ Fin ∧ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
1132, 16, 110, 112syl12anc 836 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
114 cyc3evpm.a . . . . . . 7 𝐴 = (pmEven‘𝐷)
115113, 114eleqtrrdi 2839 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
116115ad4ant13 751 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
1171, 116eqeltrrd 2829 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → 𝑝𝐴)
118 nfcv 2891 . . . . 5 𝑢(toCyc‘𝐷)
1193, 15, 79tocycf 33072 . . . . . . 7 (𝐷 ∈ Fin → (toCyc‘𝐷):{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
120119ffnd 6657 . . . . . 6 (𝐷 ∈ Fin → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
121120adantr 480 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
122 simpr 484 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐶)
123 cyc3evpm.t . . . . . 6 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
124122, 123eleqtrdi 2838 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝 ∈ ((toCyc‘𝐷) “ (♯ “ {3})))
125118, 121, 124fvelimad 6894 . . . 4 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))((toCyc‘𝐷)‘𝑢) = 𝑝)
126117, 125r19.29a 3137 . . 3 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐴)
127126ex 412 . 2 (𝐷 ∈ Fin → (𝑝𝐶𝑝𝐴))
128127ssrdv 3943 1 (𝐷 ∈ Fin → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  cun 3903  cin 3904  wss 3905  {csn 4579  {cpr 4581  {ctp 4583   class class class wbr 5095  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  2oc2o 8389  cen 8876  Fincfn 8879  0cc0 11028  1c1 11029   · cmul 11033  +∞cpnf 11165  -cneg 11366  2c2 12201  3c3 12202  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438  ⟨“cs2 14766  ⟨“cs3 14767  Basecbs 17138  +gcplusg 17179  SymGrpcsymg 19266  pmTrspcpmtr 19338  pmSgncpsgn 19386  pmEvencevpm 19387  toCycctocyc 33061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-splice 14674  df-reverse 14683  df-csh 14713  df-s2 14773  df-s3 14774  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-minusg 18834  df-subg 19020  df-ghm 19110  df-gim 19156  df-oppg 19243  df-symg 19267  df-pmtr 19339  df-psgn 19388  df-evpm 19389  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-cnfld 21280  df-tocyc 33062
This theorem is referenced by:  cyc3genpm  33107
  Copyright terms: Public domain W3C validator