Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3evpm Structured version   Visualization version   GIF version

Theorem cyc3evpm 31319
Description: 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cyc3evpm.t 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
cyc3evpm.a 𝐴 = (pmEven‘𝐷)
Assertion
Ref Expression
cyc3evpm (𝐷 ∈ Fin → 𝐶𝐴)

Proof of Theorem cyc3evpm
Dummy variables 𝑝 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) = 𝑝)
2 simpl 482 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝐷 ∈ Fin)
3 eqid 2738 . . . . . . . . 9 (toCyc‘𝐷) = (toCyc‘𝐷)
4 simpr 484 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3})))
54elin1d 4128 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
6 elrabi 3611 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢 ∈ Word 𝐷)
75, 6syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ Word 𝐷)
8 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝑤 = 𝑢)
9 dmeq 5801 . . . . . . . . . . . . 13 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
10 eqidd 2739 . . . . . . . . . . . . 13 (𝑤 = 𝑢𝐷 = 𝐷)
118, 9, 10f1eq123d 6692 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
1211elrab 3617 . . . . . . . . . . 11 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
1312simprbi 496 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢:dom 𝑢1-1𝐷)
145, 13syl 17 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:dom 𝑢1-1𝐷)
15 eqid 2738 . . . . . . . . 9 (SymGrp‘𝐷) = (SymGrp‘𝐷)
163, 2, 7, 14, 15cycpmcl 31285 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)))
17 c0ex 10900 . . . . . . . . . . . . . . . . . 18 0 ∈ V
1817tpid1 4701 . . . . . . . . . . . . . . . . 17 0 ∈ {0, 1, 2}
19 fzo0to3tp 13401 . . . . . . . . . . . . . . . . 17 (0..^3) = {0, 1, 2}
2018, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 0 ∈ (0..^3)
214elin2d 4129 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 ∈ (♯ “ {3}))
22 hashf 13980 . . . . . . . . . . . . . . . . . . . 20 ♯:V⟶(ℕ0 ∪ {+∞})
23 ffn 6584 . . . . . . . . . . . . . . . . . . . 20 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
24 elpreima 6917 . . . . . . . . . . . . . . . . . . . 20 (♯ Fn V → (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3})))
2522, 23, 24mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (♯ “ {3}) ↔ (𝑢 ∈ V ∧ (♯‘𝑢) ∈ {3}))
2625simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (♯ “ {3}) → (♯‘𝑢) ∈ {3})
27 elsni 4575 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑢) ∈ {3} → (♯‘𝑢) = 3)
2821, 26, 273syl 18 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (♯‘𝑢) = 3)
2928oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (0..^(♯‘𝑢)) = (0..^3))
3020, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 0 ∈ (0..^(♯‘𝑢)))
31 wrdsymbcl 14158 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 0 ∈ (0..^(♯‘𝑢))) → (𝑢‘0) ∈ 𝐷)
327, 30, 31syl2anc 583 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ∈ 𝐷)
33 1ex 10902 . . . . . . . . . . . . . . . . . 18 1 ∈ V
3433tpid2 4703 . . . . . . . . . . . . . . . . 17 1 ∈ {0, 1, 2}
3534, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 1 ∈ (0..^3)
3635, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 1 ∈ (0..^(♯‘𝑢)))
37 wrdsymbcl 14158 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 1 ∈ (0..^(♯‘𝑢))) → (𝑢‘1) ∈ 𝐷)
387, 36, 37syl2anc 583 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ∈ 𝐷)
39 2ex 11980 . . . . . . . . . . . . . . . . . 18 2 ∈ V
4039tpid3 4706 . . . . . . . . . . . . . . . . 17 2 ∈ {0, 1, 2}
4140, 19eleqtrri 2838 . . . . . . . . . . . . . . . 16 2 ∈ (0..^3)
4241, 29eleqtrrid 2846 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 2 ∈ (0..^(♯‘𝑢)))
43 wrdsymbcl 14158 . . . . . . . . . . . . . . 15 ((𝑢 ∈ Word 𝐷 ∧ 2 ∈ (0..^(♯‘𝑢))) → (𝑢‘2) ∈ 𝐷)
447, 42, 43syl2anc 583 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ∈ 𝐷)
4532, 38, 443jca 1126 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷))
46 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) = (𝑢‘0))
47 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) = (𝑢‘1))
48 eqidd 2739 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) = (𝑢‘2))
4946, 47, 483jca 1126 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))
50 eqwrds3 14604 . . . . . . . . . . . . . 14 ((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) → (𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩ ↔ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))))
5150biimpar 477 . . . . . . . . . . . . 13 (((𝑢 ∈ Word 𝐷 ∧ ((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷)) ∧ ((♯‘𝑢) = 3 ∧ ((𝑢‘0) = (𝑢‘0) ∧ (𝑢‘1) = (𝑢‘1) ∧ (𝑢‘2) = (𝑢‘2)))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
527, 45, 28, 49, 51syl22anc 835 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢 = ⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩)
5352fveq2d 6760 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩))
54 wrddm 14152 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ Word 𝐷 → dom 𝑢 = (0..^(♯‘𝑢)))
557, 54syl 17 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^(♯‘𝑢)))
5655, 29eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = (0..^3))
5756, 19eqtrdi 2795 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → dom 𝑢 = {0, 1, 2})
58 f1eq2 6650 . . . . . . . . . . . . . . . 16 (dom 𝑢 = {0, 1, 2} → (𝑢:dom 𝑢1-1𝐷𝑢:{0, 1, 2}–1-1𝐷))
5958biimpa 476 . . . . . . . . . . . . . . 15 ((dom 𝑢 = {0, 1, 2} ∧ 𝑢:dom 𝑢1-1𝐷) → 𝑢:{0, 1, 2}–1-1𝐷)
6057, 14, 59syl2anc 583 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → 𝑢:{0, 1, 2}–1-1𝐷)
6117, 33, 393pm3.2i 1337 . . . . . . . . . . . . . . . 16 (0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V)
62 0ne1 11974 . . . . . . . . . . . . . . . . 17 0 ≠ 1
63 0ne2 12110 . . . . . . . . . . . . . . . . 17 0 ≠ 2
64 1ne2 12111 . . . . . . . . . . . . . . . . 17 1 ≠ 2
6562, 63, 643pm3.2i 1337 . . . . . . . . . . . . . . . 16 (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)
66 eqid 2738 . . . . . . . . . . . . . . . . 17 {0, 1, 2} = {0, 1, 2}
6766f13dfv 7127 . . . . . . . . . . . . . . . 16 (((0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V) ∧ (0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2)) → (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))))
6861, 65, 67mp2an 688 . . . . . . . . . . . . . . 15 (𝑢:{0, 1, 2}–1-1𝐷 ↔ (𝑢:{0, 1, 2}⟶𝐷 ∧ ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2))))
6968simprbi 496 . . . . . . . . . . . . . 14 (𝑢:{0, 1, 2}–1-1𝐷 → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7060, 69syl 17 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((𝑢‘0) ≠ (𝑢‘1) ∧ (𝑢‘0) ≠ (𝑢‘2) ∧ (𝑢‘1) ≠ (𝑢‘2)))
7170simp1d 1140 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘1))
7270simp3d 1142 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘1) ≠ (𝑢‘2))
7370simp2d 1141 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘0) ≠ (𝑢‘2))
7473necomd 2998 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (𝑢‘2) ≠ (𝑢‘0))
75 eqid 2738 . . . . . . . . . . . 12 (+g‘(SymGrp‘𝐷)) = (+g‘(SymGrp‘𝐷))
763, 15, 2, 32, 38, 44, 71, 72, 74, 75cyc3co2 31309 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)(𝑢‘2)”⟩) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
773, 2, 32, 44, 73, 15cycpm2cl 31289 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
783, 2, 32, 38, 71, 15cycpm2cl 31289 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷)))
79 eqid 2738 . . . . . . . . . . . . 13 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
8015, 79, 75symgov 18906 . . . . . . . . . . . 12 ((((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8177, 78, 80syl2anc 583 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)(+g‘(SymGrp‘𝐷))((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8253, 76, 813eqtrd 2782 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) = (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)))
8382fveq2d 6760 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
84 eqid 2738 . . . . . . . . . . 11 (pmSgn‘𝐷) = (pmSgn‘𝐷)
8515, 84, 79psgnco 20700 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ (Base‘(SymGrp‘𝐷))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
862, 77, 78, 85syl3anc 1369 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘(((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∘ ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))))
87 eqid 2738 . . . . . . . . . . . . . 14 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 2, 32, 44, 73, 87cycpm2tr 31288 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}))
8932, 44prssd 4752 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷)
90 pr2nelem 9691 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘2) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘2)) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
9132, 44, 73, 90syl3anc 1369 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘2)} ≈ 2o)
92 eqid 2738 . . . . . . . . . . . . . . 15 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
9387, 92pmtrrn 18980 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘2)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘2)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
942, 89, 91, 93syl3anc 1369 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘2)}) ∈ ran (pmTrsp‘𝐷))
9588, 94eqeltrd 2839 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷))
9615, 92, 84psgnpmtr 19033 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
9795, 96syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) = -1)
983, 2, 32, 38, 71, 87cycpm2tr 31288 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) = ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}))
9932, 38prssd 4752 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷)
100 pr2nelem 9691 . . . . . . . . . . . . . . 15 (((𝑢‘0) ∈ 𝐷 ∧ (𝑢‘1) ∈ 𝐷 ∧ (𝑢‘0) ≠ (𝑢‘1)) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10132, 38, 71, 100syl3anc 1369 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → {(𝑢‘0), (𝑢‘1)} ≈ 2o)
10287, 92pmtrrn 18980 . . . . . . . . . . . . . 14 ((𝐷 ∈ Fin ∧ {(𝑢‘0), (𝑢‘1)} ⊆ 𝐷 ∧ {(𝑢‘0), (𝑢‘1)} ≈ 2o) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
1032, 99, 101, 102syl3anc 1369 . . . . . . . . . . . . 13 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmTrsp‘𝐷)‘{(𝑢‘0), (𝑢‘1)}) ∈ ran (pmTrsp‘𝐷))
10498, 103eqeltrd 2839 . . . . . . . . . . . 12 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷))
10515, 92, 84psgnpmtr 19033 . . . . . . . . . . . 12 (((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩) ∈ ran (pmTrsp‘𝐷) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
106104, 105syl 17 . . . . . . . . . . 11 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩)) = -1)
10797, 106oveq12d 7273 . . . . . . . . . 10 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = (-1 · -1))
108 neg1mulneg1e1 12116 . . . . . . . . . 10 (-1 · -1) = 1
109107, 108eqtrdi 2795 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → (((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘2)”⟩)) · ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘⟨“(𝑢‘0)(𝑢‘1)”⟩))) = 1)
11083, 86, 1093eqtrd 2782 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)
11115, 79, 84psgnevpmb 20704 . . . . . . . . 9 (𝐷 ∈ Fin → (((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷) ↔ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)))
112111biimpar 477 . . . . . . . 8 ((𝐷 ∈ Fin ∧ (((toCyc‘𝐷)‘𝑢) ∈ (Base‘(SymGrp‘𝐷)) ∧ ((pmSgn‘𝐷)‘((toCyc‘𝐷)‘𝑢)) = 1)) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
1132, 16, 110, 112syl12anc 833 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ (pmEven‘𝐷))
114 cyc3evpm.a . . . . . . 7 𝐴 = (pmEven‘𝐷)
115113, 114eleqtrrdi 2850 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
116115ad4ant13 747 . . . . 5 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → ((toCyc‘𝐷)‘𝑢) ∈ 𝐴)
1171, 116eqeltrrd 2840 . . . 4 ((((𝐷 ∈ Fin ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))) ∧ ((toCyc‘𝐷)‘𝑢) = 𝑝) → 𝑝𝐴)
118 nfcv 2906 . . . . 5 𝑢(toCyc‘𝐷)
1193, 15, 79tocycf 31286 . . . . . . 7 (𝐷 ∈ Fin → (toCyc‘𝐷):{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘(SymGrp‘𝐷)))
120119ffnd 6585 . . . . . 6 (𝐷 ∈ Fin → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
121120adantr 480 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → (toCyc‘𝐷) Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
122 simpr 484 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐶)
123 cyc3evpm.t . . . . . 6 𝐶 = ((toCyc‘𝐷) “ (♯ “ {3}))
124122, 123eleqtrdi 2849 . . . . 5 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝 ∈ ((toCyc‘𝐷) “ (♯ “ {3})))
125118, 121, 124fvelimad 6818 . . . 4 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {3}))((toCyc‘𝐷)‘𝑢) = 𝑝)
126117, 125r19.29a 3217 . . 3 ((𝐷 ∈ Fin ∧ 𝑝𝐶) → 𝑝𝐴)
127126ex 412 . 2 (𝐷 ∈ Fin → (𝑝𝐶𝑝𝐴))
128127ssrdv 3923 1 (𝐷 ∈ Fin → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cun 3881  cin 3882  wss 3883  {csn 4558  {cpr 4560  {ctp 4562   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  2oc2o 8261  cen 8688  Fincfn 8691  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  -cneg 11136  2c2 11958  3c3 11959  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs2 14482  ⟨“cs3 14483  Basecbs 16840  +gcplusg 16888  SymGrpcsymg 18889  pmTrspcpmtr 18964  pmSgncpsgn 19012  pmEvencevpm 19013  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-csh 14430  df-s2 14489  df-s3 14490  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-gim 18790  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014  df-evpm 19015  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-cnfld 20511  df-tocyc 31276
This theorem is referenced by:  cyc3genpm  31321
  Copyright terms: Public domain W3C validator