Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . 5
β’ ((((π· β Fin β§ π β πΆ) β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β§
((toCycβπ·)βπ’) = π) β ((toCycβπ·)βπ’) = π) |
2 | | simpl 483 |
. . . . . . . 8
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π· β Fin) |
3 | | eqid 2732 |
. . . . . . . . 9
β’
(toCycβπ·) =
(toCycβπ·) |
4 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) |
5 | 4 | elin1d 4197 |
. . . . . . . . . 10
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’ β {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
6 | | elrabi 3676 |
. . . . . . . . . 10
β’ (π’ β {π€ β Word π· β£ π€:dom π€β1-1βπ·} β π’ β Word π·) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’ β Word π·) |
8 | | id 22 |
. . . . . . . . . . . . 13
β’ (π€ = π’ β π€ = π’) |
9 | | dmeq 5901 |
. . . . . . . . . . . . 13
β’ (π€ = π’ β dom π€ = dom π’) |
10 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ (π€ = π’ β π· = π·) |
11 | 8, 9, 10 | f1eq123d 6822 |
. . . . . . . . . . . 12
β’ (π€ = π’ β (π€:dom π€β1-1βπ· β π’:dom π’β1-1βπ·)) |
12 | 11 | elrab 3682 |
. . . . . . . . . . 11
β’ (π’ β {π€ β Word π· β£ π€:dom π€β1-1βπ·} β (π’ β Word π· β§ π’:dom π’β1-1βπ·)) |
13 | 12 | simprbi 497 |
. . . . . . . . . 10
β’ (π’ β {π€ β Word π· β£ π€:dom π€β1-1βπ·} β π’:dom π’β1-1βπ·) |
14 | 5, 13 | syl 17 |
. . . . . . . . 9
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’:dom π’β1-1βπ·) |
15 | | eqid 2732 |
. . . . . . . . 9
β’
(SymGrpβπ·) =
(SymGrpβπ·) |
16 | 3, 2, 7, 14, 15 | cycpmcl 32262 |
. . . . . . . 8
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)βπ’) β (Baseβ(SymGrpβπ·))) |
17 | | c0ex 11204 |
. . . . . . . . . . . . . . . . . 18
β’ 0 β
V |
18 | 17 | tpid1 4771 |
. . . . . . . . . . . . . . . . 17
β’ 0 β
{0, 1, 2} |
19 | | fzo0to3tp 13714 |
. . . . . . . . . . . . . . . . 17
β’ (0..^3) =
{0, 1, 2} |
20 | 18, 19 | eleqtrri 2832 |
. . . . . . . . . . . . . . . 16
β’ 0 β
(0..^3) |
21 | 4 | elin2d 4198 |
. . . . . . . . . . . . . . . . . 18
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’ β (β‘β― β {3})) |
22 | | hashf 14294 |
. . . . . . . . . . . . . . . . . . . 20
β’
β―:VβΆ(β0 βͺ {+β}) |
23 | | ffn 6714 |
. . . . . . . . . . . . . . . . . . . 20
β’
(β―:VβΆ(β0 βͺ {+β}) β β―
Fn V) |
24 | | elpreima 7056 |
. . . . . . . . . . . . . . . . . . . 20
β’ (β―
Fn V β (π’ β
(β‘β― β {3}) β (π’ β V β§
(β―βπ’) β
{3}))) |
25 | 22, 23, 24 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
β’ (π’ β (β‘β― β {3}) β (π’ β V β§
(β―βπ’) β
{3})) |
26 | 25 | simprbi 497 |
. . . . . . . . . . . . . . . . . 18
β’ (π’ β (β‘β― β {3}) β
(β―βπ’) β
{3}) |
27 | | elsni 4644 |
. . . . . . . . . . . . . . . . . 18
β’
((β―βπ’)
β {3} β (β―βπ’) = 3) |
28 | 21, 26, 27 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
(β―βπ’) =
3) |
29 | 28 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
(0..^(β―βπ’)) =
(0..^3)) |
30 | 20, 29 | eleqtrrid 2840 |
. . . . . . . . . . . . . . 15
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β 0 β
(0..^(β―βπ’))) |
31 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . 15
β’ ((π’ β Word π· β§ 0 β (0..^(β―βπ’))) β (π’β0) β π·) |
32 | 7, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β0) β π·) |
33 | | 1ex 11206 |
. . . . . . . . . . . . . . . . . 18
β’ 1 β
V |
34 | 33 | tpid2 4773 |
. . . . . . . . . . . . . . . . 17
β’ 1 β
{0, 1, 2} |
35 | 34, 19 | eleqtrri 2832 |
. . . . . . . . . . . . . . . 16
β’ 1 β
(0..^3) |
36 | 35, 29 | eleqtrrid 2840 |
. . . . . . . . . . . . . . 15
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β 1 β
(0..^(β―βπ’))) |
37 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . 15
β’ ((π’ β Word π· β§ 1 β (0..^(β―βπ’))) β (π’β1) β π·) |
38 | 7, 36, 37 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β1) β π·) |
39 | | 2ex 12285 |
. . . . . . . . . . . . . . . . . 18
β’ 2 β
V |
40 | 39 | tpid3 4776 |
. . . . . . . . . . . . . . . . 17
β’ 2 β
{0, 1, 2} |
41 | 40, 19 | eleqtrri 2832 |
. . . . . . . . . . . . . . . 16
β’ 2 β
(0..^3) |
42 | 41, 29 | eleqtrrid 2840 |
. . . . . . . . . . . . . . 15
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β 2 β
(0..^(β―βπ’))) |
43 | | wrdsymbcl 14473 |
. . . . . . . . . . . . . . 15
β’ ((π’ β Word π· β§ 2 β (0..^(β―βπ’))) β (π’β2) β π·) |
44 | 7, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β2) β π·) |
45 | 32, 38, 44 | 3jca 1128 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β ((π’β0) β π· β§ (π’β1) β π· β§ (π’β2) β π·)) |
46 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β0) = (π’β0)) |
47 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β1) = (π’β1)) |
48 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β2) = (π’β2)) |
49 | 46, 47, 48 | 3jca 1128 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β ((π’β0) = (π’β0) β§ (π’β1) = (π’β1) β§ (π’β2) = (π’β2))) |
50 | | eqwrds3 14908 |
. . . . . . . . . . . . . 14
β’ ((π’ β Word π· β§ ((π’β0) β π· β§ (π’β1) β π· β§ (π’β2) β π·)) β (π’ = β¨β(π’β0)(π’β1)(π’β2)ββ© β
((β―βπ’) = 3
β§ ((π’β0) = (π’β0) β§ (π’β1) = (π’β1) β§ (π’β2) = (π’β2))))) |
51 | 50 | biimpar 478 |
. . . . . . . . . . . . 13
β’ (((π’ β Word π· β§ ((π’β0) β π· β§ (π’β1) β π· β§ (π’β2) β π·)) β§ ((β―βπ’) = 3 β§ ((π’β0) = (π’β0) β§ (π’β1) = (π’β1) β§ (π’β2) = (π’β2)))) β π’ = β¨β(π’β0)(π’β1)(π’β2)ββ©) |
52 | 7, 45, 28, 49, 51 | syl22anc 837 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’ = β¨β(π’β0)(π’β1)(π’β2)ββ©) |
53 | 52 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)βπ’) = ((toCycβπ·)ββ¨β(π’β0)(π’β1)(π’β2)ββ©)) |
54 | | wrddm 14467 |
. . . . . . . . . . . . . . . . . 18
β’ (π’ β Word π· β dom π’ = (0..^(β―βπ’))) |
55 | 7, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β dom π’ = (0..^(β―βπ’))) |
56 | 55, 29 | eqtrd 2772 |
. . . . . . . . . . . . . . . 16
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β dom π’ = (0..^3)) |
57 | 56, 19 | eqtrdi 2788 |
. . . . . . . . . . . . . . 15
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β dom π’ = {0, 1, 2}) |
58 | | f1eq2 6780 |
. . . . . . . . . . . . . . . 16
β’ (dom
π’ = {0, 1, 2} β (π’:dom π’β1-1βπ· β π’:{0, 1, 2}β1-1βπ·)) |
59 | 58 | biimpa 477 |
. . . . . . . . . . . . . . 15
β’ ((dom
π’ = {0, 1, 2} β§ π’:dom π’β1-1βπ·) β π’:{0, 1, 2}β1-1βπ·) |
60 | 57, 14, 59 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β π’:{0, 1, 2}β1-1βπ·) |
61 | 17, 33, 39 | 3pm3.2i 1339 |
. . . . . . . . . . . . . . . 16
β’ (0 β
V β§ 1 β V β§ 2 β V) |
62 | | 0ne1 12279 |
. . . . . . . . . . . . . . . . 17
β’ 0 β
1 |
63 | | 0ne2 12415 |
. . . . . . . . . . . . . . . . 17
β’ 0 β
2 |
64 | | 1ne2 12416 |
. . . . . . . . . . . . . . . . 17
β’ 1 β
2 |
65 | 62, 63, 64 | 3pm3.2i 1339 |
. . . . . . . . . . . . . . . 16
β’ (0 β 1
β§ 0 β 2 β§ 1 β 2) |
66 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ {0, 1, 2}
= {0, 1, 2} |
67 | 66 | f13dfv 7268 |
. . . . . . . . . . . . . . . 16
β’ (((0
β V β§ 1 β V β§ 2 β V) β§ (0 β 1 β§ 0 β 2
β§ 1 β 2)) β (π’:{0, 1, 2}β1-1βπ· β (π’:{0, 1, 2}βΆπ· β§ ((π’β0) β (π’β1) β§ (π’β0) β (π’β2) β§ (π’β1) β (π’β2))))) |
68 | 61, 65, 67 | mp2an 690 |
. . . . . . . . . . . . . . 15
β’ (π’:{0, 1, 2}β1-1βπ· β (π’:{0, 1, 2}βΆπ· β§ ((π’β0) β (π’β1) β§ (π’β0) β (π’β2) β§ (π’β1) β (π’β2)))) |
69 | 68 | simprbi 497 |
. . . . . . . . . . . . . 14
β’ (π’:{0, 1, 2}β1-1βπ· β ((π’β0) β (π’β1) β§ (π’β0) β (π’β2) β§ (π’β1) β (π’β2))) |
70 | 60, 69 | syl 17 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β ((π’β0) β (π’β1) β§ (π’β0) β (π’β2) β§ (π’β1) β (π’β2))) |
71 | 70 | simp1d 1142 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β0) β (π’β1)) |
72 | 70 | simp3d 1144 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β1) β (π’β2)) |
73 | 70 | simp2d 1143 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β0) β (π’β2)) |
74 | 73 | necomd 2996 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β (π’β2) β (π’β0)) |
75 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(+gβ(SymGrpβπ·)) =
(+gβ(SymGrpβπ·)) |
76 | 3, 15, 2, 32, 38, 44, 71, 72, 74, 75 | cyc3co2 32286 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)(π’β2)ββ©) =
(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)(+gβ(SymGrpβπ·))((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) |
77 | 3, 2, 32, 44, 73, 15 | cycpm2cl 32266 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
(Baseβ(SymGrpβπ·))) |
78 | 3, 2, 32, 38, 71, 15 | cycpm2cl 32266 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) β
(Baseβ(SymGrpβπ·))) |
79 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(Baseβ(SymGrpβπ·)) = (Baseβ(SymGrpβπ·)) |
80 | 15, 79, 75 | symgov 19245 |
. . . . . . . . . . . 12
β’
((((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
(Baseβ(SymGrpβπ·)) β§ ((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) β
(Baseβ(SymGrpβπ·))) β (((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)(+gβ(SymGrpβπ·))((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)) = (((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β ((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) |
81 | 77, 78, 80 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)(+gβ(SymGrpβπ·))((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)) = (((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β ((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) |
82 | 53, 76, 81 | 3eqtrd 2776 |
. . . . . . . . . 10
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)βπ’) = (((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) |
83 | 82 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmSgnβπ·)β((toCycβπ·)βπ’)) = ((pmSgnβπ·)β(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)))) |
84 | | eqid 2732 |
. . . . . . . . . . 11
β’
(pmSgnβπ·) =
(pmSgnβπ·) |
85 | 15, 84, 79 | psgnco 21127 |
. . . . . . . . . 10
β’ ((π· β Fin β§
((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
(Baseβ(SymGrpβπ·)) β§ ((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) β
(Baseβ(SymGrpβπ·))) β ((pmSgnβπ·)β(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) =
(((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) Β·
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)))) |
86 | 2, 77, 78, 85 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmSgnβπ·)β(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) =
(((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) Β·
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)))) |
87 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(pmTrspβπ·) =
(pmTrspβπ·) |
88 | 3, 2, 32, 44, 73, 87 | cycpm2tr 32265 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) =
((pmTrspβπ·)β{(π’β0), (π’β2)})) |
89 | 32, 44 | prssd 4824 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β {(π’β0), (π’β2)} β π·) |
90 | | enpr2 9993 |
. . . . . . . . . . . . . . 15
β’ (((π’β0) β π· β§ (π’β2) β π· β§ (π’β0) β (π’β2)) β {(π’β0), (π’β2)} β
2o) |
91 | 32, 44, 73, 90 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β {(π’β0), (π’β2)} β
2o) |
92 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’ ran
(pmTrspβπ·) = ran
(pmTrspβπ·) |
93 | 87, 92 | pmtrrn 19319 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ {(π’β0), (π’β2)} β π· β§ {(π’β0), (π’β2)} β 2o) β
((pmTrspβπ·)β{(π’β0), (π’β2)}) β ran (pmTrspβπ·)) |
94 | 2, 89, 91, 93 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmTrspβπ·)β{(π’β0), (π’β2)}) β ran (pmTrspβπ·)) |
95 | 88, 94 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β ran
(pmTrspβπ·)) |
96 | 15, 92, 84 | psgnpmtr 19372 |
. . . . . . . . . . . 12
β’
(((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©) β ran
(pmTrspβπ·) β
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) =
-1) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) =
-1) |
98 | 3, 2, 32, 38, 71, 87 | cycpm2tr 32265 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) =
((pmTrspβπ·)β{(π’β0), (π’β1)})) |
99 | 32, 38 | prssd 4824 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β {(π’β0), (π’β1)} β π·) |
100 | | enpr2 9993 |
. . . . . . . . . . . . . . 15
β’ (((π’β0) β π· β§ (π’β1) β π· β§ (π’β0) β (π’β1)) β {(π’β0), (π’β1)} β
2o) |
101 | 32, 38, 71, 100 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β {(π’β0), (π’β1)} β
2o) |
102 | 87, 92 | pmtrrn 19319 |
. . . . . . . . . . . . . 14
β’ ((π· β Fin β§ {(π’β0), (π’β1)} β π· β§ {(π’β0), (π’β1)} β 2o) β
((pmTrspβπ·)β{(π’β0), (π’β1)}) β ran (pmTrspβπ·)) |
103 | 2, 99, 101, 102 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmTrspβπ·)β{(π’β0), (π’β1)}) β ran (pmTrspβπ·)) |
104 | 98, 103 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) β ran
(pmTrspβπ·)) |
105 | 15, 92, 84 | psgnpmtr 19372 |
. . . . . . . . . . . 12
β’
(((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©) β ran
(pmTrspβπ·) β
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)) =
-1) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . 11
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©)) =
-1) |
107 | 97, 106 | oveq12d 7423 |
. . . . . . . . . 10
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
(((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) Β·
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) = (-1 Β·
-1)) |
108 | | neg1mulneg1e1 12421 |
. . . . . . . . . 10
β’ (-1
Β· -1) = 1 |
109 | 107, 108 | eqtrdi 2788 |
. . . . . . . . 9
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
(((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β2)ββ©)) Β·
((pmSgnβπ·)β((toCycβπ·)ββ¨β(π’β0)(π’β1)ββ©))) =
1) |
110 | 83, 86, 109 | 3eqtrd 2776 |
. . . . . . . 8
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((pmSgnβπ·)β((toCycβπ·)βπ’)) = 1) |
111 | 15, 79, 84 | psgnevpmb 21131 |
. . . . . . . . 9
β’ (π· β Fin β
(((toCycβπ·)βπ’) β (pmEvenβπ·) β (((toCycβπ·)βπ’) β (Baseβ(SymGrpβπ·)) β§ ((pmSgnβπ·)β((toCycβπ·)βπ’)) = 1))) |
112 | 111 | biimpar 478 |
. . . . . . . 8
β’ ((π· β Fin β§
(((toCycβπ·)βπ’) β (Baseβ(SymGrpβπ·)) β§ ((pmSgnβπ·)β((toCycβπ·)βπ’)) = 1)) β ((toCycβπ·)βπ’) β (pmEvenβπ·)) |
113 | 2, 16, 110, 112 | syl12anc 835 |
. . . . . . 7
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)βπ’) β (pmEvenβπ·)) |
114 | | cyc3evpm.a |
. . . . . . 7
β’ π΄ = (pmEvenβπ·) |
115 | 113, 114 | eleqtrrdi 2844 |
. . . . . 6
β’ ((π· β Fin β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β
((toCycβπ·)βπ’) β π΄) |
116 | 115 | ad4ant13 749 |
. . . . 5
β’ ((((π· β Fin β§ π β πΆ) β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β§
((toCycβπ·)βπ’) = π) β ((toCycβπ·)βπ’) β π΄) |
117 | 1, 116 | eqeltrrd 2834 |
. . . 4
β’ ((((π· β Fin β§ π β πΆ) β§ π’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))) β§
((toCycβπ·)βπ’) = π) β π β π΄) |
118 | | nfcv 2903 |
. . . . 5
β’
β²π’(toCycβπ·) |
119 | 3, 15, 79 | tocycf 32263 |
. . . . . . 7
β’ (π· β Fin β
(toCycβπ·):{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆ(Baseβ(SymGrpβπ·))) |
120 | 119 | ffnd 6715 |
. . . . . 6
β’ (π· β Fin β
(toCycβπ·) Fn {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
121 | 120 | adantr 481 |
. . . . 5
β’ ((π· β Fin β§ π β πΆ) β (toCycβπ·) Fn {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
122 | | simpr 485 |
. . . . . 6
β’ ((π· β Fin β§ π β πΆ) β π β πΆ) |
123 | | cyc3evpm.t |
. . . . . 6
β’ πΆ = ((toCycβπ·) β (β‘β― β {3})) |
124 | 122, 123 | eleqtrdi 2843 |
. . . . 5
β’ ((π· β Fin β§ π β πΆ) β π β ((toCycβπ·) β (β‘β― β {3}))) |
125 | 118, 121,
124 | fvelimad 6956 |
. . . 4
β’ ((π· β Fin β§ π β πΆ) β βπ’ β ({π€ β Word π· β£ π€:dom π€β1-1βπ·} β© (β‘β― β {3}))((toCycβπ·)βπ’) = π) |
126 | 117, 125 | r19.29a 3162 |
. . 3
β’ ((π· β Fin β§ π β πΆ) β π β π΄) |
127 | 126 | ex 413 |
. 2
β’ (π· β Fin β (π β πΆ β π β π΄)) |
128 | 127 | ssrdv 3987 |
1
β’ (π· β Fin β πΆ β π΄) |