Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750leme Structured version   Visualization version   GIF version

Theorem hgt750leme 34642
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750leme.0 (𝜑 → (10↑27) ≤ 𝑁)
hgt750leme.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750leme.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750leme.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
hgt750leme.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
Assertion
Ref Expression
hgt750leme (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Distinct variable groups:   𝑧,𝑂   𝑚,𝐻   𝑚,𝐾   𝑚,𝑁,𝑛   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧,𝑛)   𝐾(𝑧,𝑛)   𝑁(𝑧)

Proof of Theorem hgt750leme
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgt750leme.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnnn0d 12445 . . . . 5 (𝜑𝑁 ∈ ℕ0)
3 3nn0 12402 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝜑 → 3 ∈ ℕ0)
5 ssidd 3959 . . . . 5 (𝜑 → ℕ ⊆ ℕ)
62, 4, 5reprfi2 34607 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
7 diffi 9089 . . . 4 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
9 vmaf 27027 . . . . . . 7 Λ:ℕ⟶ℝ
109a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → Λ:ℕ⟶ℝ)
11 ssidd 3959 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ℕ ⊆ ℕ)
121nnzd 12498 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑁 ∈ ℤ)
143a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 3 ∈ ℕ0)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)))
1615eldifad 3915 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
1711, 13, 14, 16reprf 34596 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛:(0..^3)⟶ℕ)
18 c0ex 11109 . . . . . . . . . 10 0 ∈ V
1918tpid1 4720 . . . . . . . . 9 0 ∈ {0, 1, 2}
20 fzo0to3tp 13655 . . . . . . . . 9 (0..^3) = {0, 1, 2}
2119, 20eleqtrri 2827 . . . . . . . 8 0 ∈ (0..^3)
2221a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 0 ∈ (0..^3))
2317, 22ffvelcdmd 7019 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘0) ∈ ℕ)
2410, 23ffvelcdmd 7019 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘0)) ∈ ℝ)
25 rge0ssre 13359 . . . . . 6 (0[,)+∞) ⊆ ℝ
26 hgt750leme.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
2726adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐻:ℕ⟶(0[,)+∞))
2827, 23ffvelcdmd 7019 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
2925, 28sselid 3933 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3024, 29remulcld 11145 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
31 1ex 11111 . . . . . . . . . . 11 1 ∈ V
3231tpid2 4722 . . . . . . . . . 10 1 ∈ {0, 1, 2}
3332, 20eleqtrri 2827 . . . . . . . . 9 1 ∈ (0..^3)
3433a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 1 ∈ (0..^3))
3517, 34ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘1) ∈ ℕ)
3610, 35ffvelcdmd 7019 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘1)) ∈ ℝ)
37 hgt750leme.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
3837adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐾:ℕ⟶(0[,)+∞))
3938, 35ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
4025, 39sselid 3933 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4136, 40remulcld 11145 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
42 2ex 12205 . . . . . . . . . . 11 2 ∈ V
4342tpid3 4725 . . . . . . . . . 10 2 ∈ {0, 1, 2}
4443, 20eleqtrri 2827 . . . . . . . . 9 2 ∈ (0..^3)
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 2 ∈ (0..^3))
4617, 45ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘2) ∈ ℕ)
4710, 46ffvelcdmd 7019 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘2)) ∈ ℝ)
4838, 46ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
4925, 48sselid 3933 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5047, 49remulcld 11145 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5141, 50remulcld 11145 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5230, 51remulcld 11145 . . 3 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
538, 52fsumrecl 15641 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
54 3re 12208 . . . 4 3 ∈ ℝ
5554a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
56 1nn0 12400 . . . . . . . . 9 1 ∈ ℕ0
57 0nn0 12399 . . . . . . . . . 10 0 ∈ ℕ0
58 7nn0 12406 . . . . . . . . . . 11 7 ∈ ℕ0
59 9nn0 12408 . . . . . . . . . . . 12 9 ∈ ℕ0
60 5nn0 12404 . . . . . . . . . . . . . 14 5 ∈ ℕ0
61 5nn 12214 . . . . . . . . . . . . . . 15 5 ∈ ℕ
62 nnrp 12905 . . . . . . . . . . . . . . 15 (5 ∈ ℕ → 5 ∈ ℝ+)
6361, 62ax-mp 5 . . . . . . . . . . . . . 14 5 ∈ ℝ+
6460, 63rpdp2cl 32831 . . . . . . . . . . . . 13 55 ∈ ℝ+
6559, 64rpdp2cl 32831 . . . . . . . . . . . 12 955 ∈ ℝ+
6659, 65rpdp2cl 32831 . . . . . . . . . . 11 9955 ∈ ℝ+
6758, 66rpdp2cl 32831 . . . . . . . . . 10 79955 ∈ ℝ+
6857, 67rpdp2cl 32831 . . . . . . . . 9 079955 ∈ ℝ+
6956, 68rpdpcl 32852 . . . . . . . 8 (1.079955) ∈ ℝ+
7069a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ+)
7170rpred 12937 . . . . . 6 (𝜑 → (1.079955) ∈ ℝ)
7271resqcld 14032 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℝ)
73 4nn0 12403 . . . . . . . . 9 4 ∈ ℕ0
74 4nn 12211 . . . . . . . . . . 11 4 ∈ ℕ
75 nnrp 12905 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
7756, 76rpdp2cl 32831 . . . . . . . . 9 14 ∈ ℝ+
7873, 77rpdp2cl 32831 . . . . . . . 8 414 ∈ ℝ+
7956, 78rpdpcl 32852 . . . . . . 7 (1.414) ∈ ℝ+
8079a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ+)
8180rpred 12937 . . . . 5 (𝜑 → (1.414) ∈ ℝ)
8272, 81remulcld 11145 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
83 fveq1 6821 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
8483eleq1d 2813 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8584notbid 318 . . . . . . . 8 (𝑑 = 𝑐 → (¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8685cbvrabv 3405 . . . . . . 7 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
8786ssrab3 4033 . . . . . 6 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
88 ssfi 9087 . . . . . 6 (((ℕ(repr‘3)𝑁) ∈ Fin ∧ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)) → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
896, 87, 88sylancl 586 . . . . 5 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
909a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
91 ssidd 3959 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
9212adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
933a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
9487a1i 11 . . . . . . . . . 10 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
9594sselda 3935 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
9691, 92, 93, 95reprf 34596 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
9721a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
9896, 97ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
9990, 98ffvelcdmd 7019 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
10033a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
10196, 100ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
10290, 101ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
10344a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
10496, 103ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
10590, 104ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
106102, 105remulcld 11145 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
10799, 106remulcld 11145 . . . . 5 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10889, 107fsumrecl 15641 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10982, 108remulcld 11145 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
11055, 109remulcld 11145 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
111 4re 12212 . . . . . . . . . 10 4 ∈ ℝ
112 8re 12224 . . . . . . . . . 10 8 ∈ ℝ
113111, 112pm3.2i 470 . . . . . . . . 9 (4 ∈ ℝ ∧ 8 ∈ ℝ)
114 dp2cl 32829 . . . . . . . . 9 ((4 ∈ ℝ ∧ 8 ∈ ℝ) → 48 ∈ ℝ)
115113, 114ax-mp 5 . . . . . . . 8 48 ∈ ℝ
11654, 115pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 48 ∈ ℝ)
117 dp2cl 32829 . . . . . . 7 ((3 ∈ ℝ ∧ 48 ∈ ℝ) → 348 ∈ ℝ)
118116, 117ax-mp 5 . . . . . 6 348 ∈ ℝ
119 dpcl 32840 . . . . . 6 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
12058, 118, 119mp2an 692 . . . . 5 (7.348) ∈ ℝ
121120a1i 11 . . . 4 (𝜑 → (7.348) ∈ ℝ)
1221nnrpd 12935 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
123122relogcld 26530 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
1241nnred 12143 . . . . . 6 (𝜑𝑁 ∈ ℝ)
125122rpge0d 12941 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
126124, 125resqrtcld 15325 . . . . 5 (𝜑 → (√‘𝑁) ∈ ℝ)
127122rpsqrtcld 15319 . . . . . 6 (𝜑 → (√‘𝑁) ∈ ℝ+)
128127rpne0d 12942 . . . . 5 (𝜑 → (√‘𝑁) ≠ 0)
129123, 126, 128redivcld 11952 . . . 4 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
130121, 129remulcld 11145 . . 3 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
131124resqcld 14032 . . 3 (𝜑 → (𝑁↑2) ∈ ℝ)
132130, 131remulcld 11145 . 2 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
133 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
134 7re 12221 . . . . . . . . . . . . 13 7 ∈ ℝ
135 9re 12227 . . . . . . . . . . . . . . 15 9 ∈ ℝ
136 5re 12215 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
137136, 136pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (5 ∈ ℝ ∧ 5 ∈ ℝ)
138 dp2cl 32829 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℝ ∧ 5 ∈ ℝ) → 55 ∈ ℝ)
139137, 138ax-mp 5 . . . . . . . . . . . . . . . . 17 55 ∈ ℝ
140135, 139pm3.2i 470 . . . . . . . . . . . . . . . 16 (9 ∈ ℝ ∧ 55 ∈ ℝ)
141 dp2cl 32829 . . . . . . . . . . . . . . . 16 ((9 ∈ ℝ ∧ 55 ∈ ℝ) → 955 ∈ ℝ)
142140, 141ax-mp 5 . . . . . . . . . . . . . . 15 955 ∈ ℝ
143135, 142pm3.2i 470 . . . . . . . . . . . . . 14 (9 ∈ ℝ ∧ 955 ∈ ℝ)
144 dp2cl 32829 . . . . . . . . . . . . . 14 ((9 ∈ ℝ ∧ 955 ∈ ℝ) → 9955 ∈ ℝ)
145143, 144ax-mp 5 . . . . . . . . . . . . 13 9955 ∈ ℝ
146134, 145pm3.2i 470 . . . . . . . . . . . 12 (7 ∈ ℝ ∧ 9955 ∈ ℝ)
147 dp2cl 32829 . . . . . . . . . . . 12 ((7 ∈ ℝ ∧ 9955 ∈ ℝ) → 79955 ∈ ℝ)
148146, 147ax-mp 5 . . . . . . . . . . 11 79955 ∈ ℝ
149133, 148pm3.2i 470 . . . . . . . . . 10 (0 ∈ ℝ ∧ 79955 ∈ ℝ)
150 dp2cl 32829 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 79955 ∈ ℝ) → 079955 ∈ ℝ)
151149, 150ax-mp 5 . . . . . . . . 9 079955 ∈ ℝ
152 dpcl 32840 . . . . . . . . 9 ((1 ∈ ℕ0079955 ∈ ℝ) → (1.079955) ∈ ℝ)
15356, 151, 152mp2an 692 . . . . . . . 8 (1.079955) ∈ ℝ
154153a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ)
155154resqcld 14032 . . . . . 6 (𝜑 → ((1.079955)↑2) ∈ ℝ)
156 1re 11115 . . . . . . . . . . . 12 1 ∈ ℝ
157156, 111pm3.2i 470 . . . . . . . . . . 11 (1 ∈ ℝ ∧ 4 ∈ ℝ)
158 dp2cl 32829 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 4 ∈ ℝ) → 14 ∈ ℝ)
159157, 158ax-mp 5 . . . . . . . . . 10 14 ∈ ℝ
160111, 159pm3.2i 470 . . . . . . . . 9 (4 ∈ ℝ ∧ 14 ∈ ℝ)
161 dp2cl 32829 . . . . . . . . 9 ((4 ∈ ℝ ∧ 14 ∈ ℝ) → 414 ∈ ℝ)
162160, 161ax-mp 5 . . . . . . . 8 414 ∈ ℝ
163 dpcl 32840 . . . . . . . 8 ((1 ∈ ℕ0414 ∈ ℝ) → (1.414) ∈ ℝ)
16456, 162, 163mp2an 692 . . . . . . 7 (1.414) ∈ ℝ
165164a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ)
166155, 165remulcld 11145 . . . . 5 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
16736, 47remulcld 11145 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
16824, 167remulcld 11145 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
1698, 168fsumrecl 15641 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
170166, 169remulcld 11145 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
17155, 108remulcld 11145 . . . . 5 (𝜑 → (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
172166, 171remulcld 11145 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
173 hgt750leme.1 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
174 hgt750leme.2 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
1758, 154, 165, 26, 37, 23, 35, 46, 173, 174hgt750lemf 34637 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
176 hgt750leme.o . . . . . 6 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
177 2re 12202 . . . . . . . 8 2 ∈ ℝ
178177a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
179 10nn0 12609 . . . . . . . . . 10 10 ∈ ℕ0
180 2nn0 12401 . . . . . . . . . . 11 2 ∈ ℕ0
181180, 58deccl 12606 . . . . . . . . . 10 27 ∈ ℕ0
182179, 181nn0expcli 13995 . . . . . . . . 9 (10↑27) ∈ ℕ0
183182nn0rei 12395 . . . . . . . 8 (10↑27) ∈ ℝ
184183a1i 11 . . . . . . 7 (𝜑 → (10↑27) ∈ ℝ)
185179numexp1 16988 . . . . . . . . . 10 (10↑1) = 10
186179nn0rei 12395 . . . . . . . . . 10 10 ∈ ℝ
187185, 186eqeltri 2824 . . . . . . . . 9 (10↑1) ∈ ℝ
188187a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ∈ ℝ)
189 1nn 12139 . . . . . . . . . . 11 1 ∈ ℕ
190 2lt9 12328 . . . . . . . . . . . 12 2 < 9
191177, 135, 190ltleii 11239 . . . . . . . . . . 11 2 ≤ 9
192189, 57, 180, 191declei 12627 . . . . . . . . . 10 2 ≤ 10
193192, 185breqtrri 5119 . . . . . . . . 9 2 ≤ (10↑1)
194193a1i 11 . . . . . . . 8 (𝜑 → 2 ≤ (10↑1))
195 1z 12505 . . . . . . . . . . . 12 1 ∈ ℤ
196181nn0zi 12500 . . . . . . . . . . . 12 27 ∈ ℤ
197186, 195, 1963pm3.2i 1340 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ)
198 1lt10 12730 . . . . . . . . . . 11 1 < 10
199197, 198pm3.2i 470 . . . . . . . . . 10 ((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10)
200 2nn 12201 . . . . . . . . . . 11 2 ∈ ℕ
201 1lt9 12329 . . . . . . . . . . . 12 1 < 9
202156, 135, 201ltleii 11239 . . . . . . . . . . 11 1 ≤ 9
203200, 58, 56, 202declei 12627 . . . . . . . . . 10 1 ≤ 27
204 leexp2 14078 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) → (1 ≤ 27 ↔ (10↑1) ≤ (10↑27)))
205204biimpa 476 . . . . . . . . . 10 ((((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) ∧ 1 ≤ 27) → (10↑1) ≤ (10↑27))
206199, 203, 205mp2an 692 . . . . . . . . 9 (10↑1) ≤ (10↑27)
207206a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ≤ (10↑27))
208178, 188, 184, 194, 207letrd 11273 . . . . . . 7 (𝜑 → 2 ≤ (10↑27))
209 hgt750leme.0 . . . . . . 7 (𝜑 → (10↑27) ≤ 𝑁)
210178, 184, 124, 208, 209letrd 11273 . . . . . 6 (𝜑 → 2 ≤ 𝑁)
211 eqid 2729 . . . . . 6 (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) = (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
212176, 1, 210, 86, 211hgt750lema 34641 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
213 2z 12507 . . . . . . . . 9 2 ∈ ℤ
214213a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
21570, 214rpexpcld 14154 . . . . . . 7 (𝜑 → ((1.079955)↑2) ∈ ℝ+)
216215, 80rpmulcld 12953 . . . . . 6 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ+)
217169, 171, 216lemul2d 12981 . . . . 5 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))))
218212, 217mpbid 232 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
21953, 170, 172, 175, 218letrd 11273 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
220154recnd 11143 . . . . . 6 (𝜑 → (1.079955) ∈ ℂ)
221220sqcld 14051 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℂ)
222165recnd 11143 . . . . 5 (𝜑 → (1.414) ∈ ℂ)
223221, 222mulcld 11135 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
224 3cn 12209 . . . . 5 3 ∈ ℂ
225224a1i 11 . . . 4 (𝜑 → 3 ∈ ℂ)
226108recnd 11143 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
227223, 225, 226mul12d 11325 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) = (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
228219, 227breqtrd 5118 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
229 fzfi 13879 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
230 diffi 9089 . . . . . . . . . . 11 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
231229, 230ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ ℙ) ∈ Fin
232 snfi 8968 . . . . . . . . . 10 {2} ∈ Fin
233 unfi 9085 . . . . . . . . . 10 ((((1...𝑁) ∖ ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
234231, 232, 233mp2an 692 . . . . . . . . 9 (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin
235234a1i 11 . . . . . . . 8 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
2369a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → Λ:ℕ⟶ℝ)
237 fz1ssnn 13458 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ⊆ ℕ)
239238ssdifssd 4098 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
240200a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
241240snssd 4760 . . . . . . . . . . 11 (𝜑 → {2} ⊆ ℕ)
242239, 241unssd 4143 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
243242sselda 3935 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈ ℕ)
244236, 243ffvelcdmd 7019 . . . . . . . 8 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℝ)
245235, 244fsumrecl 15641 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) ∈ ℝ)
246 chpvalz 34612 . . . . . . . . 9 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
24712, 246syl 17 . . . . . . . 8 (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
248 chpf 27031 . . . . . . . . . 10 ψ:ℝ⟶ℝ
249248a1i 11 . . . . . . . . 9 (𝜑 → ψ:ℝ⟶ℝ)
250249, 124ffvelcdmd 7019 . . . . . . . 8 (𝜑 → (ψ‘𝑁) ∈ ℝ)
251247, 250eqeltrrd 2829 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ)
252245, 251remulcld 11145 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ∈ ℝ)
253123, 252remulcld 11145 . . . . 5 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ∈ ℝ)
25482, 253remulcld 11145 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ∈ ℝ)
25555, 254remulcld 11145 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ∈ ℝ)
256176, 1, 210, 86hgt750lemb 34640 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
257108, 253, 216lemul2d 12981 . . . . 5 (𝜑 → (Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
258256, 257mpbid 232 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))
259 3rp 12899 . . . . . 6 3 ∈ ℝ+
260259a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ+)
261109, 254, 260lemul2d 12981 . . . 4 (𝜑 → (((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))))
262258, 261mpbid 232 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
263 6re 12218 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
264263, 54pm3.2i 470 . . . . . . . . . . . . . . . 16 (6 ∈ ℝ ∧ 3 ∈ ℝ)
265 dp2cl 32829 . . . . . . . . . . . . . . . 16 ((6 ∈ ℝ ∧ 3 ∈ ℝ) → 63 ∈ ℝ)
266264, 265ax-mp 5 . . . . . . . . . . . . . . 15 63 ∈ ℝ
267177, 266pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 63 ∈ ℝ)
268 dp2cl 32829 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 63 ∈ ℝ) → 263 ∈ ℝ)
269267, 268ax-mp 5 . . . . . . . . . . . . 13 263 ∈ ℝ
270111, 269pm3.2i 470 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 263 ∈ ℝ)
271 dp2cl 32829 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 263 ∈ ℝ) → 4263 ∈ ℝ)
272270, 271ax-mp 5 . . . . . . . . . . 11 4263 ∈ ℝ
273 dpcl 32840 . . . . . . . . . . 11 ((1 ∈ ℕ04263 ∈ ℝ) → (1.4263) ∈ ℝ)
27456, 272, 273mp2an 692 . . . . . . . . . 10 (1.4263) ∈ ℝ
275274a1i 11 . . . . . . . . 9 (𝜑 → (1.4263) ∈ ℝ)
276275, 126remulcld 11145 . . . . . . . 8 (𝜑 → ((1.4263) · (√‘𝑁)) ∈ ℝ)
277112, 54pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (8 ∈ ℝ ∧ 3 ∈ ℝ)
278 dp2cl 32829 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℝ ∧ 3 ∈ ℝ) → 83 ∈ ℝ)
279277, 278ax-mp 5 . . . . . . . . . . . . . . . . 17 83 ∈ ℝ
280112, 279pm3.2i 470 . . . . . . . . . . . . . . . 16 (8 ∈ ℝ ∧ 83 ∈ ℝ)
281 dp2cl 32829 . . . . . . . . . . . . . . . 16 ((8 ∈ ℝ ∧ 83 ∈ ℝ) → 883 ∈ ℝ)
282280, 281ax-mp 5 . . . . . . . . . . . . . . 15 883 ∈ ℝ
28354, 282pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℝ ∧ 883 ∈ ℝ)
284 dp2cl 32829 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 883 ∈ ℝ) → 3883 ∈ ℝ)
285283, 284ax-mp 5 . . . . . . . . . . . . 13 3883 ∈ ℝ
286133, 285pm3.2i 470 . . . . . . . . . . . 12 (0 ∈ ℝ ∧ 3883 ∈ ℝ)
287 dp2cl 32829 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 3883 ∈ ℝ) → 03883 ∈ ℝ)
288286, 287ax-mp 5 . . . . . . . . . . 11 03883 ∈ ℝ
289 dpcl 32840 . . . . . . . . . . 11 ((1 ∈ ℕ003883 ∈ ℝ) → (1.03883) ∈ ℝ)
29056, 288, 289mp2an 692 . . . . . . . . . 10 (1.03883) ∈ ℝ
291290a1i 11 . . . . . . . . 9 (𝜑 → (1.03883) ∈ ℝ)
292291, 124remulcld 11145 . . . . . . . 8 (𝜑 → ((1.03883) · 𝑁) ∈ ℝ)
293276, 292remulcld 11145 . . . . . . 7 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ∈ ℝ)
294123, 293remulcld 11145 . . . . . 6 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ∈ ℝ)
29582, 294remulcld 11145 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ∈ ℝ)
29655, 295remulcld 11145 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ∈ ℝ)
297 vmage0 27029 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 0 ≤ (Λ‘𝑖))
298243, 297syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 0 ≤ (Λ‘𝑖))
299235, 244, 298fsumge0 15702 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖))
3001, 209hgt750lemd 34632 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
301 fzfid 13880 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
3029a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
303238sselda 3935 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
304302, 303ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
305 vmage0 27029 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 0 ≤ (Λ‘𝑗))
306303, 305syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ (Λ‘𝑗))
307301, 304, 306fsumge0 15702 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
3081hgt750lemc 34631 . . . . . . . . 9 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
309245, 276, 251, 292, 299, 300, 307, 308ltmul12ad 12066 . . . . . . . 8 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) < (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
310252, 293, 309ltled 11264 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
311156a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
312 1lt2 12294 . . . . . . . . . . 11 1 < 2
313312a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
314311, 178, 124, 313, 210ltletrd 11276 . . . . . . . . 9 (𝜑 → 1 < 𝑁)
315124, 314rplogcld 26536 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ+)
316252, 293, 315lemul2d 12981 . . . . . . 7 (𝜑 → ((Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ↔ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
317310, 316mpbid 232 . . . . . 6 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))
318253, 294, 216lemul2d 12981 . . . . . 6 (𝜑 → (((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ↔ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
319317, 318mpbid 232 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
320254, 295, 260lemul2d 12981 . . . . 5 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))))
321319, 320mpbid 232 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
322153resqcli 14093 . . . . . . . . . 10 ((1.079955)↑2) ∈ ℝ
323322, 164remulcli 11131 . . . . . . . . 9 (((1.079955)↑2) · (1.414)) ∈ ℝ
324274, 290remulcli 11131 . . . . . . . . 9 ((1.4263) · (1.03883)) ∈ ℝ
325323, 324remulcli 11131 . . . . . . . 8 ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℝ
32654, 325remulcli 11131 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ
327 hgt750lem2 34636 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) < (7.348)
328326, 120, 327ltleii 11239 . . . . . 6 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348)
329326a1i 11 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ)
330315, 127rpdivcld 12954 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ+)
331122, 214rpexpcld 14154 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
332330, 331rpmulcld 12953 . . . . . . 7 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) ∈ ℝ+)
333329, 121, 332lemul1d 12980 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348) ↔ ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))))
334328, 333mpbii 233 . . . . 5 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
335275recnd 11143 . . . . . . . . . . . . . 14 (𝜑 → (1.4263) ∈ ℂ)
336126recnd 11143 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑁) ∈ ℂ)
337291recnd 11143 . . . . . . . . . . . . . 14 (𝜑 → (1.03883) ∈ ℂ)
338124recnd 11143 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
339335, 336, 337, 338mul4d 11328 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) = (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)))
340339oveq2d 7365 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))))
341123recnd 11143 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℂ)
342335, 337mulcld 11135 . . . . . . . . . . . . . 14 (𝜑 → ((1.4263) · (1.03883)) ∈ ℂ)
343336, 338mulcld 11135 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑁) · 𝑁) ∈ ℂ)
344342, 343mulcld 11135 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) ∈ ℂ)
345341, 344mulcomd 11136 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
346340, 345eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
347342, 343, 341mulassd 11138 . . . . . . . . . . 11 (𝜑 → ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
348346, 347eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
349348oveq2d 7365 . . . . . . . . 9 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35082recnd 11143 . . . . . . . . . 10 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
351343, 341mulcld 11135 . . . . . . . . . 10 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) ∈ ℂ)
352350, 342, 351mulassd 11138 . . . . . . . . 9 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
353349, 352eqtr4d 2767 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
354353oveq2d 7365 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35555recnd 11143 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
356350, 342mulcld 11135 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℂ)
357355, 356, 351mulassd 11138 . . . . . . 7 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
358354, 357eqtr4d 2767 . . . . . 6 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
359131recnd 11143 . . . . . . . . 9 (𝜑 → (𝑁↑2) ∈ ℂ)
360341, 336, 359, 128div32d 11923 . . . . . . . 8 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) = ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))))
361359, 336, 128divcld 11900 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) ∈ ℂ)
362341, 361mulcomd 11136 . . . . . . . 8 (𝜑 → ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))) = (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)))
363338sqvald 14050 . . . . . . . . . . . 12 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
364363oveq1d 7364 . . . . . . . . . . 11 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((𝑁 · 𝑁) / (√‘𝑁)))
365338, 338, 336, 128divassd 11935 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝑁) / (√‘𝑁)) = (𝑁 · (𝑁 / (√‘𝑁))))
366 divsqrtid 34578 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 / (√‘𝑁)) = (√‘𝑁))
367122, 366syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 / (√‘𝑁)) = (√‘𝑁))
368367oveq2d 7365 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑁 / (√‘𝑁))) = (𝑁 · (√‘𝑁)))
369364, 365, 3683eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = (𝑁 · (√‘𝑁)))
370338, 336mulcomd 11136 . . . . . . . . . 10 (𝜑 → (𝑁 · (√‘𝑁)) = ((√‘𝑁) · 𝑁))
371369, 370eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((√‘𝑁) · 𝑁))
372371oveq1d 7364 . . . . . . . 8 (𝜑 → (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)) = (((√‘𝑁) · 𝑁) · (log‘𝑁)))
373360, 362, 3723eqtrrd 2769 . . . . . . 7 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) = (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))
374373oveq2d 7365 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
375358, 374eqtrd 2764 . . . . 5 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
376121recnd 11143 . . . . . 6 (𝜑 → (7.348) ∈ ℂ)
377129recnd 11143 . . . . . 6 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℂ)
378376, 377, 359mulassd 11138 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) = ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
379334, 375, 3783brtr4d 5124 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
380255, 296, 132, 321, 379letrd 11273 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
381110, 255, 132, 262, 380letrd 11273 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
38253, 110, 132, 228, 381letrd 11273 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  cun 3901  cin 3902  wss 3903  ifcif 4476  {csn 4577  {cpr 4579  {ctp 4581   class class class wbr 5092  cmpt 5173   I cid 5513  cres 5621  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  +∞cpnf 11146   < clt 11149  cle 11150   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cz 12471  cdc 12591  +crp 12893  [,)cico 13250  ...cfz 13410  ..^cfzo 13557  cexp 13968  csqrt 15140  Σcsu 15593  cdvds 16163  cprime 16582  pmTrspcpmtr 19320  logclog 26461  Λcvma 27000  ψcchp 27001  cdp2 32820  .cdp 32837  reprcrepr 34592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-ros335 34629  ax-ros336 34630
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-pmtr 19321  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-atan 26775  df-cht 27005  df-vma 27006  df-chp 27007  df-dp2 32821  df-dp 32838  df-repr 34593
This theorem is referenced by:  tgoldbachgtde  34644
  Copyright terms: Public domain W3C validator