Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750leme Structured version   Visualization version   GIF version

Theorem hgt750leme 34673
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750leme.0 (𝜑 → (10↑27) ≤ 𝑁)
hgt750leme.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750leme.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750leme.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
hgt750leme.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
Assertion
Ref Expression
hgt750leme (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Distinct variable groups:   𝑧,𝑂   𝑚,𝐻   𝑚,𝐾   𝑚,𝑁,𝑛   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧,𝑛)   𝐾(𝑧,𝑛)   𝑁(𝑧)

Proof of Theorem hgt750leme
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgt750leme.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnnn0d 12587 . . . . 5 (𝜑𝑁 ∈ ℕ0)
3 3nn0 12544 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝜑 → 3 ∈ ℕ0)
5 ssidd 4007 . . . . 5 (𝜑 → ℕ ⊆ ℕ)
62, 4, 5reprfi2 34638 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
7 diffi 9215 . . . 4 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
9 vmaf 27162 . . . . . . 7 Λ:ℕ⟶ℝ
109a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → Λ:ℕ⟶ℝ)
11 ssidd 4007 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ℕ ⊆ ℕ)
121nnzd 12640 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑁 ∈ ℤ)
143a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 3 ∈ ℕ0)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)))
1615eldifad 3963 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
1711, 13, 14, 16reprf 34627 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛:(0..^3)⟶ℕ)
18 c0ex 11255 . . . . . . . . . 10 0 ∈ V
1918tpid1 4768 . . . . . . . . 9 0 ∈ {0, 1, 2}
20 fzo0to3tp 13791 . . . . . . . . 9 (0..^3) = {0, 1, 2}
2119, 20eleqtrri 2840 . . . . . . . 8 0 ∈ (0..^3)
2221a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 0 ∈ (0..^3))
2317, 22ffvelcdmd 7105 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘0) ∈ ℕ)
2410, 23ffvelcdmd 7105 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘0)) ∈ ℝ)
25 rge0ssre 13496 . . . . . 6 (0[,)+∞) ⊆ ℝ
26 hgt750leme.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
2726adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐻:ℕ⟶(0[,)+∞))
2827, 23ffvelcdmd 7105 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
2925, 28sselid 3981 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3024, 29remulcld 11291 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
31 1ex 11257 . . . . . . . . . . 11 1 ∈ V
3231tpid2 4770 . . . . . . . . . 10 1 ∈ {0, 1, 2}
3332, 20eleqtrri 2840 . . . . . . . . 9 1 ∈ (0..^3)
3433a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 1 ∈ (0..^3))
3517, 34ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘1) ∈ ℕ)
3610, 35ffvelcdmd 7105 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘1)) ∈ ℝ)
37 hgt750leme.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
3837adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐾:ℕ⟶(0[,)+∞))
3938, 35ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
4025, 39sselid 3981 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4136, 40remulcld 11291 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
42 2ex 12343 . . . . . . . . . . 11 2 ∈ V
4342tpid3 4773 . . . . . . . . . 10 2 ∈ {0, 1, 2}
4443, 20eleqtrri 2840 . . . . . . . . 9 2 ∈ (0..^3)
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 2 ∈ (0..^3))
4617, 45ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘2) ∈ ℕ)
4710, 46ffvelcdmd 7105 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘2)) ∈ ℝ)
4838, 46ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
4925, 48sselid 3981 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5047, 49remulcld 11291 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5141, 50remulcld 11291 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5230, 51remulcld 11291 . . 3 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
538, 52fsumrecl 15770 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
54 3re 12346 . . . 4 3 ∈ ℝ
5554a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
56 1nn0 12542 . . . . . . . . 9 1 ∈ ℕ0
57 0nn0 12541 . . . . . . . . . 10 0 ∈ ℕ0
58 7nn0 12548 . . . . . . . . . . 11 7 ∈ ℕ0
59 9nn0 12550 . . . . . . . . . . . 12 9 ∈ ℕ0
60 5nn0 12546 . . . . . . . . . . . . . 14 5 ∈ ℕ0
61 5nn 12352 . . . . . . . . . . . . . . 15 5 ∈ ℕ
62 nnrp 13046 . . . . . . . . . . . . . . 15 (5 ∈ ℕ → 5 ∈ ℝ+)
6361, 62ax-mp 5 . . . . . . . . . . . . . 14 5 ∈ ℝ+
6460, 63rpdp2cl 32864 . . . . . . . . . . . . 13 55 ∈ ℝ+
6559, 64rpdp2cl 32864 . . . . . . . . . . . 12 955 ∈ ℝ+
6659, 65rpdp2cl 32864 . . . . . . . . . . 11 9955 ∈ ℝ+
6758, 66rpdp2cl 32864 . . . . . . . . . 10 79955 ∈ ℝ+
6857, 67rpdp2cl 32864 . . . . . . . . 9 079955 ∈ ℝ+
6956, 68rpdpcl 32885 . . . . . . . 8 (1.079955) ∈ ℝ+
7069a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ+)
7170rpred 13077 . . . . . 6 (𝜑 → (1.079955) ∈ ℝ)
7271resqcld 14165 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℝ)
73 4nn0 12545 . . . . . . . . 9 4 ∈ ℕ0
74 4nn 12349 . . . . . . . . . . 11 4 ∈ ℕ
75 nnrp 13046 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
7756, 76rpdp2cl 32864 . . . . . . . . 9 14 ∈ ℝ+
7873, 77rpdp2cl 32864 . . . . . . . 8 414 ∈ ℝ+
7956, 78rpdpcl 32885 . . . . . . 7 (1.414) ∈ ℝ+
8079a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ+)
8180rpred 13077 . . . . 5 (𝜑 → (1.414) ∈ ℝ)
8272, 81remulcld 11291 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
83 fveq1 6905 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
8483eleq1d 2826 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8584notbid 318 . . . . . . . 8 (𝑑 = 𝑐 → (¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8685cbvrabv 3447 . . . . . . 7 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
8786ssrab3 4082 . . . . . 6 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
88 ssfi 9213 . . . . . 6 (((ℕ(repr‘3)𝑁) ∈ Fin ∧ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)) → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
896, 87, 88sylancl 586 . . . . 5 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
909a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
91 ssidd 4007 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
9212adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
933a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
9487a1i 11 . . . . . . . . . 10 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
9594sselda 3983 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
9691, 92, 93, 95reprf 34627 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
9721a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
9896, 97ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
9990, 98ffvelcdmd 7105 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
10033a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
10196, 100ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
10290, 101ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
10344a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
10496, 103ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
10590, 104ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
106102, 105remulcld 11291 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
10799, 106remulcld 11291 . . . . 5 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10889, 107fsumrecl 15770 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10982, 108remulcld 11291 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
11055, 109remulcld 11291 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
111 4re 12350 . . . . . . . . . 10 4 ∈ ℝ
112 8re 12362 . . . . . . . . . 10 8 ∈ ℝ
113111, 112pm3.2i 470 . . . . . . . . 9 (4 ∈ ℝ ∧ 8 ∈ ℝ)
114 dp2cl 32862 . . . . . . . . 9 ((4 ∈ ℝ ∧ 8 ∈ ℝ) → 48 ∈ ℝ)
115113, 114ax-mp 5 . . . . . . . 8 48 ∈ ℝ
11654, 115pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 48 ∈ ℝ)
117 dp2cl 32862 . . . . . . 7 ((3 ∈ ℝ ∧ 48 ∈ ℝ) → 348 ∈ ℝ)
118116, 117ax-mp 5 . . . . . 6 348 ∈ ℝ
119 dpcl 32873 . . . . . 6 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
12058, 118, 119mp2an 692 . . . . 5 (7.348) ∈ ℝ
121120a1i 11 . . . 4 (𝜑 → (7.348) ∈ ℝ)
1221nnrpd 13075 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
123122relogcld 26665 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
1241nnred 12281 . . . . . 6 (𝜑𝑁 ∈ ℝ)
125122rpge0d 13081 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
126124, 125resqrtcld 15456 . . . . 5 (𝜑 → (√‘𝑁) ∈ ℝ)
127122rpsqrtcld 15450 . . . . . 6 (𝜑 → (√‘𝑁) ∈ ℝ+)
128127rpne0d 13082 . . . . 5 (𝜑 → (√‘𝑁) ≠ 0)
129123, 126, 128redivcld 12095 . . . 4 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
130121, 129remulcld 11291 . . 3 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
131124resqcld 14165 . . 3 (𝜑 → (𝑁↑2) ∈ ℝ)
132130, 131remulcld 11291 . 2 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
133 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
134 7re 12359 . . . . . . . . . . . . 13 7 ∈ ℝ
135 9re 12365 . . . . . . . . . . . . . . 15 9 ∈ ℝ
136 5re 12353 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
137136, 136pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (5 ∈ ℝ ∧ 5 ∈ ℝ)
138 dp2cl 32862 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℝ ∧ 5 ∈ ℝ) → 55 ∈ ℝ)
139137, 138ax-mp 5 . . . . . . . . . . . . . . . . 17 55 ∈ ℝ
140135, 139pm3.2i 470 . . . . . . . . . . . . . . . 16 (9 ∈ ℝ ∧ 55 ∈ ℝ)
141 dp2cl 32862 . . . . . . . . . . . . . . . 16 ((9 ∈ ℝ ∧ 55 ∈ ℝ) → 955 ∈ ℝ)
142140, 141ax-mp 5 . . . . . . . . . . . . . . 15 955 ∈ ℝ
143135, 142pm3.2i 470 . . . . . . . . . . . . . 14 (9 ∈ ℝ ∧ 955 ∈ ℝ)
144 dp2cl 32862 . . . . . . . . . . . . . 14 ((9 ∈ ℝ ∧ 955 ∈ ℝ) → 9955 ∈ ℝ)
145143, 144ax-mp 5 . . . . . . . . . . . . 13 9955 ∈ ℝ
146134, 145pm3.2i 470 . . . . . . . . . . . 12 (7 ∈ ℝ ∧ 9955 ∈ ℝ)
147 dp2cl 32862 . . . . . . . . . . . 12 ((7 ∈ ℝ ∧ 9955 ∈ ℝ) → 79955 ∈ ℝ)
148146, 147ax-mp 5 . . . . . . . . . . 11 79955 ∈ ℝ
149133, 148pm3.2i 470 . . . . . . . . . 10 (0 ∈ ℝ ∧ 79955 ∈ ℝ)
150 dp2cl 32862 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 79955 ∈ ℝ) → 079955 ∈ ℝ)
151149, 150ax-mp 5 . . . . . . . . 9 079955 ∈ ℝ
152 dpcl 32873 . . . . . . . . 9 ((1 ∈ ℕ0079955 ∈ ℝ) → (1.079955) ∈ ℝ)
15356, 151, 152mp2an 692 . . . . . . . 8 (1.079955) ∈ ℝ
154153a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ)
155154resqcld 14165 . . . . . 6 (𝜑 → ((1.079955)↑2) ∈ ℝ)
156 1re 11261 . . . . . . . . . . . 12 1 ∈ ℝ
157156, 111pm3.2i 470 . . . . . . . . . . 11 (1 ∈ ℝ ∧ 4 ∈ ℝ)
158 dp2cl 32862 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 4 ∈ ℝ) → 14 ∈ ℝ)
159157, 158ax-mp 5 . . . . . . . . . 10 14 ∈ ℝ
160111, 159pm3.2i 470 . . . . . . . . 9 (4 ∈ ℝ ∧ 14 ∈ ℝ)
161 dp2cl 32862 . . . . . . . . 9 ((4 ∈ ℝ ∧ 14 ∈ ℝ) → 414 ∈ ℝ)
162160, 161ax-mp 5 . . . . . . . 8 414 ∈ ℝ
163 dpcl 32873 . . . . . . . 8 ((1 ∈ ℕ0414 ∈ ℝ) → (1.414) ∈ ℝ)
16456, 162, 163mp2an 692 . . . . . . 7 (1.414) ∈ ℝ
165164a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ)
166155, 165remulcld 11291 . . . . 5 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
16736, 47remulcld 11291 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
16824, 167remulcld 11291 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
1698, 168fsumrecl 15770 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
170166, 169remulcld 11291 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
17155, 108remulcld 11291 . . . . 5 (𝜑 → (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
172166, 171remulcld 11291 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
173 hgt750leme.1 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
174 hgt750leme.2 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
1758, 154, 165, 26, 37, 23, 35, 46, 173, 174hgt750lemf 34668 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
176 hgt750leme.o . . . . . 6 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
177 2re 12340 . . . . . . . 8 2 ∈ ℝ
178177a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
179 10nn0 12751 . . . . . . . . . 10 10 ∈ ℕ0
180 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
181180, 58deccl 12748 . . . . . . . . . 10 27 ∈ ℕ0
182179, 181nn0expcli 14129 . . . . . . . . 9 (10↑27) ∈ ℕ0
183182nn0rei 12537 . . . . . . . 8 (10↑27) ∈ ℝ
184183a1i 11 . . . . . . 7 (𝜑 → (10↑27) ∈ ℝ)
185179numexp1 17114 . . . . . . . . . 10 (10↑1) = 10
186179nn0rei 12537 . . . . . . . . . 10 10 ∈ ℝ
187185, 186eqeltri 2837 . . . . . . . . 9 (10↑1) ∈ ℝ
188187a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ∈ ℝ)
189 1nn 12277 . . . . . . . . . . 11 1 ∈ ℕ
190 2lt9 12471 . . . . . . . . . . . 12 2 < 9
191177, 135, 190ltleii 11384 . . . . . . . . . . 11 2 ≤ 9
192189, 57, 180, 191declei 12769 . . . . . . . . . 10 2 ≤ 10
193192, 185breqtrri 5170 . . . . . . . . 9 2 ≤ (10↑1)
194193a1i 11 . . . . . . . 8 (𝜑 → 2 ≤ (10↑1))
195 1z 12647 . . . . . . . . . . . 12 1 ∈ ℤ
196181nn0zi 12642 . . . . . . . . . . . 12 27 ∈ ℤ
197186, 195, 1963pm3.2i 1340 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ)
198 1lt10 12872 . . . . . . . . . . 11 1 < 10
199197, 198pm3.2i 470 . . . . . . . . . 10 ((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10)
200 2nn 12339 . . . . . . . . . . 11 2 ∈ ℕ
201 1lt9 12472 . . . . . . . . . . . 12 1 < 9
202156, 135, 201ltleii 11384 . . . . . . . . . . 11 1 ≤ 9
203200, 58, 56, 202declei 12769 . . . . . . . . . 10 1 ≤ 27
204 leexp2 14211 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) → (1 ≤ 27 ↔ (10↑1) ≤ (10↑27)))
205204biimpa 476 . . . . . . . . . 10 ((((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) ∧ 1 ≤ 27) → (10↑1) ≤ (10↑27))
206199, 203, 205mp2an 692 . . . . . . . . 9 (10↑1) ≤ (10↑27)
207206a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ≤ (10↑27))
208178, 188, 184, 194, 207letrd 11418 . . . . . . 7 (𝜑 → 2 ≤ (10↑27))
209 hgt750leme.0 . . . . . . 7 (𝜑 → (10↑27) ≤ 𝑁)
210178, 184, 124, 208, 209letrd 11418 . . . . . 6 (𝜑 → 2 ≤ 𝑁)
211 eqid 2737 . . . . . 6 (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) = (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
212176, 1, 210, 86, 211hgt750lema 34672 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
213 2z 12649 . . . . . . . . 9 2 ∈ ℤ
214213a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
21570, 214rpexpcld 14286 . . . . . . 7 (𝜑 → ((1.079955)↑2) ∈ ℝ+)
216215, 80rpmulcld 13093 . . . . . 6 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ+)
217169, 171, 216lemul2d 13121 . . . . 5 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))))
218212, 217mpbid 232 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
21953, 170, 172, 175, 218letrd 11418 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
220154recnd 11289 . . . . . 6 (𝜑 → (1.079955) ∈ ℂ)
221220sqcld 14184 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℂ)
222165recnd 11289 . . . . 5 (𝜑 → (1.414) ∈ ℂ)
223221, 222mulcld 11281 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
224 3cn 12347 . . . . 5 3 ∈ ℂ
225224a1i 11 . . . 4 (𝜑 → 3 ∈ ℂ)
226108recnd 11289 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
227223, 225, 226mul12d 11470 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) = (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
228219, 227breqtrd 5169 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
229 fzfi 14013 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
230 diffi 9215 . . . . . . . . . . 11 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
231229, 230ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ ℙ) ∈ Fin
232 snfi 9083 . . . . . . . . . 10 {2} ∈ Fin
233 unfi 9211 . . . . . . . . . 10 ((((1...𝑁) ∖ ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
234231, 232, 233mp2an 692 . . . . . . . . 9 (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin
235234a1i 11 . . . . . . . 8 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
2369a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → Λ:ℕ⟶ℝ)
237 fz1ssnn 13595 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ⊆ ℕ)
239238ssdifssd 4147 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
240200a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
241240snssd 4809 . . . . . . . . . . 11 (𝜑 → {2} ⊆ ℕ)
242239, 241unssd 4192 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
243242sselda 3983 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈ ℕ)
244236, 243ffvelcdmd 7105 . . . . . . . 8 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℝ)
245235, 244fsumrecl 15770 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) ∈ ℝ)
246 chpvalz 34643 . . . . . . . . 9 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
24712, 246syl 17 . . . . . . . 8 (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
248 chpf 27166 . . . . . . . . . 10 ψ:ℝ⟶ℝ
249248a1i 11 . . . . . . . . 9 (𝜑 → ψ:ℝ⟶ℝ)
250249, 124ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (ψ‘𝑁) ∈ ℝ)
251247, 250eqeltrrd 2842 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ)
252245, 251remulcld 11291 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ∈ ℝ)
253123, 252remulcld 11291 . . . . 5 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ∈ ℝ)
25482, 253remulcld 11291 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ∈ ℝ)
25555, 254remulcld 11291 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ∈ ℝ)
256176, 1, 210, 86hgt750lemb 34671 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
257108, 253, 216lemul2d 13121 . . . . 5 (𝜑 → (Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
258256, 257mpbid 232 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))
259 3rp 13040 . . . . . 6 3 ∈ ℝ+
260259a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ+)
261109, 254, 260lemul2d 13121 . . . 4 (𝜑 → (((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))))
262258, 261mpbid 232 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
263 6re 12356 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
264263, 54pm3.2i 470 . . . . . . . . . . . . . . . 16 (6 ∈ ℝ ∧ 3 ∈ ℝ)
265 dp2cl 32862 . . . . . . . . . . . . . . . 16 ((6 ∈ ℝ ∧ 3 ∈ ℝ) → 63 ∈ ℝ)
266264, 265ax-mp 5 . . . . . . . . . . . . . . 15 63 ∈ ℝ
267177, 266pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 63 ∈ ℝ)
268 dp2cl 32862 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 63 ∈ ℝ) → 263 ∈ ℝ)
269267, 268ax-mp 5 . . . . . . . . . . . . 13 263 ∈ ℝ
270111, 269pm3.2i 470 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 263 ∈ ℝ)
271 dp2cl 32862 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 263 ∈ ℝ) → 4263 ∈ ℝ)
272270, 271ax-mp 5 . . . . . . . . . . 11 4263 ∈ ℝ
273 dpcl 32873 . . . . . . . . . . 11 ((1 ∈ ℕ04263 ∈ ℝ) → (1.4263) ∈ ℝ)
27456, 272, 273mp2an 692 . . . . . . . . . 10 (1.4263) ∈ ℝ
275274a1i 11 . . . . . . . . 9 (𝜑 → (1.4263) ∈ ℝ)
276275, 126remulcld 11291 . . . . . . . 8 (𝜑 → ((1.4263) · (√‘𝑁)) ∈ ℝ)
277112, 54pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (8 ∈ ℝ ∧ 3 ∈ ℝ)
278 dp2cl 32862 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℝ ∧ 3 ∈ ℝ) → 83 ∈ ℝ)
279277, 278ax-mp 5 . . . . . . . . . . . . . . . . 17 83 ∈ ℝ
280112, 279pm3.2i 470 . . . . . . . . . . . . . . . 16 (8 ∈ ℝ ∧ 83 ∈ ℝ)
281 dp2cl 32862 . . . . . . . . . . . . . . . 16 ((8 ∈ ℝ ∧ 83 ∈ ℝ) → 883 ∈ ℝ)
282280, 281ax-mp 5 . . . . . . . . . . . . . . 15 883 ∈ ℝ
28354, 282pm3.2i 470 . . . . . . . . . . . . . 14 (3 ∈ ℝ ∧ 883 ∈ ℝ)
284 dp2cl 32862 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 883 ∈ ℝ) → 3883 ∈ ℝ)
285283, 284ax-mp 5 . . . . . . . . . . . . 13 3883 ∈ ℝ
286133, 285pm3.2i 470 . . . . . . . . . . . 12 (0 ∈ ℝ ∧ 3883 ∈ ℝ)
287 dp2cl 32862 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 3883 ∈ ℝ) → 03883 ∈ ℝ)
288286, 287ax-mp 5 . . . . . . . . . . 11 03883 ∈ ℝ
289 dpcl 32873 . . . . . . . . . . 11 ((1 ∈ ℕ003883 ∈ ℝ) → (1.03883) ∈ ℝ)
29056, 288, 289mp2an 692 . . . . . . . . . 10 (1.03883) ∈ ℝ
291290a1i 11 . . . . . . . . 9 (𝜑 → (1.03883) ∈ ℝ)
292291, 124remulcld 11291 . . . . . . . 8 (𝜑 → ((1.03883) · 𝑁) ∈ ℝ)
293276, 292remulcld 11291 . . . . . . 7 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ∈ ℝ)
294123, 293remulcld 11291 . . . . . 6 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ∈ ℝ)
29582, 294remulcld 11291 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ∈ ℝ)
29655, 295remulcld 11291 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ∈ ℝ)
297 vmage0 27164 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 0 ≤ (Λ‘𝑖))
298243, 297syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 0 ≤ (Λ‘𝑖))
299235, 244, 298fsumge0 15831 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖))
3001, 209hgt750lemd 34663 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
301 fzfid 14014 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
3029a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
303238sselda 3983 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
304302, 303ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
305 vmage0 27164 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 0 ≤ (Λ‘𝑗))
306303, 305syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ (Λ‘𝑗))
307301, 304, 306fsumge0 15831 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
3081hgt750lemc 34662 . . . . . . . . 9 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
309245, 276, 251, 292, 299, 300, 307, 308ltmul12ad 12209 . . . . . . . 8 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) < (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
310252, 293, 309ltled 11409 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
311156a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
312 1lt2 12437 . . . . . . . . . . 11 1 < 2
313312a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
314311, 178, 124, 313, 210ltletrd 11421 . . . . . . . . 9 (𝜑 → 1 < 𝑁)
315124, 314rplogcld 26671 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ+)
316252, 293, 315lemul2d 13121 . . . . . . 7 (𝜑 → ((Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ↔ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
317310, 316mpbid 232 . . . . . 6 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))
318253, 294, 216lemul2d 13121 . . . . . 6 (𝜑 → (((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ↔ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
319317, 318mpbid 232 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
320254, 295, 260lemul2d 13121 . . . . 5 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))))
321319, 320mpbid 232 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
322153resqcli 14225 . . . . . . . . . 10 ((1.079955)↑2) ∈ ℝ
323322, 164remulcli 11277 . . . . . . . . 9 (((1.079955)↑2) · (1.414)) ∈ ℝ
324274, 290remulcli 11277 . . . . . . . . 9 ((1.4263) · (1.03883)) ∈ ℝ
325323, 324remulcli 11277 . . . . . . . 8 ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℝ
32654, 325remulcli 11277 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ
327 hgt750lem2 34667 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) < (7.348)
328326, 120, 327ltleii 11384 . . . . . 6 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348)
329326a1i 11 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ)
330315, 127rpdivcld 13094 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ+)
331122, 214rpexpcld 14286 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
332330, 331rpmulcld 13093 . . . . . . 7 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) ∈ ℝ+)
333329, 121, 332lemul1d 13120 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348) ↔ ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))))
334328, 333mpbii 233 . . . . 5 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
335275recnd 11289 . . . . . . . . . . . . . 14 (𝜑 → (1.4263) ∈ ℂ)
336126recnd 11289 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑁) ∈ ℂ)
337291recnd 11289 . . . . . . . . . . . . . 14 (𝜑 → (1.03883) ∈ ℂ)
338124recnd 11289 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
339335, 336, 337, 338mul4d 11473 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) = (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)))
340339oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))))
341123recnd 11289 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℂ)
342335, 337mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → ((1.4263) · (1.03883)) ∈ ℂ)
343336, 338mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑁) · 𝑁) ∈ ℂ)
344342, 343mulcld 11281 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) ∈ ℂ)
345341, 344mulcomd 11282 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
346340, 345eqtrd 2777 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
347342, 343, 341mulassd 11284 . . . . . . . . . . 11 (𝜑 → ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
348346, 347eqtrd 2777 . . . . . . . . . 10 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
349348oveq2d 7447 . . . . . . . . 9 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35082recnd 11289 . . . . . . . . . 10 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
351343, 341mulcld 11281 . . . . . . . . . 10 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) ∈ ℂ)
352350, 342, 351mulassd 11284 . . . . . . . . 9 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
353349, 352eqtr4d 2780 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
354353oveq2d 7447 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35555recnd 11289 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
356350, 342mulcld 11281 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℂ)
357355, 356, 351mulassd 11284 . . . . . . 7 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
358354, 357eqtr4d 2780 . . . . . 6 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
359131recnd 11289 . . . . . . . . 9 (𝜑 → (𝑁↑2) ∈ ℂ)
360341, 336, 359, 128div32d 12066 . . . . . . . 8 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) = ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))))
361359, 336, 128divcld 12043 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) ∈ ℂ)
362341, 361mulcomd 11282 . . . . . . . 8 (𝜑 → ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))) = (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)))
363338sqvald 14183 . . . . . . . . . . . 12 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
364363oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((𝑁 · 𝑁) / (√‘𝑁)))
365338, 338, 336, 128divassd 12078 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝑁) / (√‘𝑁)) = (𝑁 · (𝑁 / (√‘𝑁))))
366 divsqrtid 34609 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 / (√‘𝑁)) = (√‘𝑁))
367122, 366syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 / (√‘𝑁)) = (√‘𝑁))
368367oveq2d 7447 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑁 / (√‘𝑁))) = (𝑁 · (√‘𝑁)))
369364, 365, 3683eqtrd 2781 . . . . . . . . . 10 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = (𝑁 · (√‘𝑁)))
370338, 336mulcomd 11282 . . . . . . . . . 10 (𝜑 → (𝑁 · (√‘𝑁)) = ((√‘𝑁) · 𝑁))
371369, 370eqtrd 2777 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((√‘𝑁) · 𝑁))
372371oveq1d 7446 . . . . . . . 8 (𝜑 → (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)) = (((√‘𝑁) · 𝑁) · (log‘𝑁)))
373360, 362, 3723eqtrrd 2782 . . . . . . 7 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) = (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))
374373oveq2d 7447 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
375358, 374eqtrd 2777 . . . . 5 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
376121recnd 11289 . . . . . 6 (𝜑 → (7.348) ∈ ℂ)
377129recnd 11289 . . . . . 6 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℂ)
378376, 377, 359mulassd 11284 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) = ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
379334, 375, 3783brtr4d 5175 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
380255, 296, 132, 321, 379letrd 11418 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
381110, 255, 132, 262, 380letrd 11418 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
38253, 110, 132, 228, 381letrd 11418 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  cun 3949  cin 3950  wss 3951  ifcif 4525  {csn 4626  {cpr 4628  {ctp 4630   class class class wbr 5143  cmpt 5225   I cid 5577  cres 5687  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  +∞cpnf 11292   < clt 11295  cle 11296   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  4c4 12323  5c5 12324  6c6 12325  7c7 12326  8c8 12327  9c9 12328  0cn0 12526  cz 12613  cdc 12733  +crp 13034  [,)cico 13389  ...cfz 13547  ..^cfzo 13694  cexp 14102  csqrt 15272  Σcsu 15722  cdvds 16290  cprime 16708  pmTrspcpmtr 19459  logclog 26596  Λcvma 27135  ψcchp 27136  cdp2 32853  .cdp 32870  reprcrepr 34623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-ros335 34660  ax-ros336 34661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-r1 9804  df-rank 9805  df-dju 9941  df-card 9979  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-pmtr 19460  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-atan 26910  df-cht 27140  df-vma 27141  df-chp 27142  df-dp2 32854  df-dp 32871  df-repr 34624
This theorem is referenced by:  tgoldbachgtde  34675
  Copyright terms: Public domain W3C validator