Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750leme Structured version   Visualization version   GIF version

Theorem hgt750leme 32105
 Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750leme.0 (𝜑 → (10↑27) ≤ 𝑁)
hgt750leme.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750leme.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750leme.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
hgt750leme.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
Assertion
Ref Expression
hgt750leme (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Distinct variable groups:   𝑧,𝑂   𝑚,𝐻   𝑚,𝐾   𝑚,𝑁,𝑛   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧,𝑛)   𝐾(𝑧,𝑛)   𝑁(𝑧)

Proof of Theorem hgt750leme
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgt750leme.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnnn0d 11963 . . . . 5 (𝜑𝑁 ∈ ℕ0)
3 3nn0 11921 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝜑 → 3 ∈ ℕ0)
5 ssidd 3940 . . . . 5 (𝜑 → ℕ ⊆ ℕ)
62, 4, 5reprfi2 32070 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
7 diffi 8752 . . . 4 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
86, 7syl 17 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
9 vmaf 25748 . . . . . . 7 Λ:ℕ⟶ℝ
109a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → Λ:ℕ⟶ℝ)
11 ssidd 3940 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ℕ ⊆ ℕ)
121nnzd 12094 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1312adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑁 ∈ ℤ)
143a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 3 ∈ ℕ0)
15 simpr 488 . . . . . . . . 9 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)))
1615eldifad 3895 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
1711, 13, 14, 16reprf 32059 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛:(0..^3)⟶ℕ)
18 c0ex 10642 . . . . . . . . . 10 0 ∈ V
1918tpid1 4667 . . . . . . . . 9 0 ∈ {0, 1, 2}
20 fzo0to3tp 13138 . . . . . . . . 9 (0..^3) = {0, 1, 2}
2119, 20eleqtrri 2889 . . . . . . . 8 0 ∈ (0..^3)
2221a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 0 ∈ (0..^3))
2317, 22ffvelrnd 6839 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘0) ∈ ℕ)
2410, 23ffvelrnd 6839 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘0)) ∈ ℝ)
25 rge0ssre 12854 . . . . . 6 (0[,)+∞) ⊆ ℝ
26 hgt750leme.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
2726adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐻:ℕ⟶(0[,)+∞))
2827, 23ffvelrnd 6839 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
2925, 28sseldi 3915 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3024, 29remulcld 10678 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
31 1ex 10644 . . . . . . . . . . 11 1 ∈ V
3231tpid2 4669 . . . . . . . . . 10 1 ∈ {0, 1, 2}
3332, 20eleqtrri 2889 . . . . . . . . 9 1 ∈ (0..^3)
3433a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 1 ∈ (0..^3))
3517, 34ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘1) ∈ ℕ)
3610, 35ffvelrnd 6839 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘1)) ∈ ℝ)
37 hgt750leme.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
3837adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐾:ℕ⟶(0[,)+∞))
3938, 35ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
4025, 39sseldi 3915 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4136, 40remulcld 10678 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
42 2ex 11720 . . . . . . . . . . 11 2 ∈ V
4342tpid3 4672 . . . . . . . . . 10 2 ∈ {0, 1, 2}
4443, 20eleqtrri 2889 . . . . . . . . 9 2 ∈ (0..^3)
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 2 ∈ (0..^3))
4617, 45ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘2) ∈ ℕ)
4710, 46ffvelrnd 6839 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘2)) ∈ ℝ)
4838, 46ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
4925, 48sseldi 3915 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5047, 49remulcld 10678 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5141, 50remulcld 10678 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5230, 51remulcld 10678 . . 3 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
538, 52fsumrecl 15103 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
54 3re 11723 . . . 4 3 ∈ ℝ
5554a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
56 1nn0 11919 . . . . . . . . 9 1 ∈ ℕ0
57 0nn0 11918 . . . . . . . . . 10 0 ∈ ℕ0
58 7nn0 11925 . . . . . . . . . . 11 7 ∈ ℕ0
59 9nn0 11927 . . . . . . . . . . . 12 9 ∈ ℕ0
60 5nn0 11923 . . . . . . . . . . . . . 14 5 ∈ ℕ0
61 5nn 11729 . . . . . . . . . . . . . . 15 5 ∈ ℕ
62 nnrp 12408 . . . . . . . . . . . . . . 15 (5 ∈ ℕ → 5 ∈ ℝ+)
6361, 62ax-mp 5 . . . . . . . . . . . . . 14 5 ∈ ℝ+
6460, 63rpdp2cl 30628 . . . . . . . . . . . . 13 55 ∈ ℝ+
6559, 64rpdp2cl 30628 . . . . . . . . . . . 12 955 ∈ ℝ+
6659, 65rpdp2cl 30628 . . . . . . . . . . 11 9955 ∈ ℝ+
6758, 66rpdp2cl 30628 . . . . . . . . . 10 79955 ∈ ℝ+
6857, 67rpdp2cl 30628 . . . . . . . . 9 079955 ∈ ℝ+
6956, 68rpdpcl 30649 . . . . . . . 8 (1.079955) ∈ ℝ+
7069a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ+)
7170rpred 12439 . . . . . 6 (𝜑 → (1.079955) ∈ ℝ)
7271resqcld 13627 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℝ)
73 4nn0 11922 . . . . . . . . 9 4 ∈ ℕ0
74 4nn 11726 . . . . . . . . . . 11 4 ∈ ℕ
75 nnrp 12408 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
7674, 75ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
7756, 76rpdp2cl 30628 . . . . . . . . 9 14 ∈ ℝ+
7873, 77rpdp2cl 30628 . . . . . . . 8 414 ∈ ℝ+
7956, 78rpdpcl 30649 . . . . . . 7 (1.414) ∈ ℝ+
8079a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ+)
8180rpred 12439 . . . . 5 (𝜑 → (1.414) ∈ ℝ)
8272, 81remulcld 10678 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
83 fveq1 6654 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
8483eleq1d 2874 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8584notbid 321 . . . . . . . 8 (𝑑 = 𝑐 → (¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8685cbvrabv 3440 . . . . . . 7 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
8786ssrab3 4011 . . . . . 6 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
88 ssfi 8740 . . . . . 6 (((ℕ(repr‘3)𝑁) ∈ Fin ∧ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)) → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
896, 87, 88sylancl 589 . . . . 5 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
909a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
91 ssidd 3940 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
9212adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
933a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
9487a1i 11 . . . . . . . . . 10 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
9594sselda 3917 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
9691, 92, 93, 95reprf 32059 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
9721a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
9896, 97ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
9990, 98ffvelrnd 6839 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
10033a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
10196, 100ffvelrnd 6839 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
10290, 101ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
10344a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
10496, 103ffvelrnd 6839 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
10590, 104ffvelrnd 6839 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
106102, 105remulcld 10678 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
10799, 106remulcld 10678 . . . . 5 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10889, 107fsumrecl 15103 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10982, 108remulcld 10678 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
11055, 109remulcld 10678 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
111 4re 11727 . . . . . . . . . 10 4 ∈ ℝ
112 8re 11739 . . . . . . . . . 10 8 ∈ ℝ
113111, 112pm3.2i 474 . . . . . . . . 9 (4 ∈ ℝ ∧ 8 ∈ ℝ)
114 dp2cl 30626 . . . . . . . . 9 ((4 ∈ ℝ ∧ 8 ∈ ℝ) → 48 ∈ ℝ)
115113, 114ax-mp 5 . . . . . . . 8 48 ∈ ℝ
11654, 115pm3.2i 474 . . . . . . 7 (3 ∈ ℝ ∧ 48 ∈ ℝ)
117 dp2cl 30626 . . . . . . 7 ((3 ∈ ℝ ∧ 48 ∈ ℝ) → 348 ∈ ℝ)
118116, 117ax-mp 5 . . . . . 6 348 ∈ ℝ
119 dpcl 30637 . . . . . 6 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
12058, 118, 119mp2an 691 . . . . 5 (7.348) ∈ ℝ
121120a1i 11 . . . 4 (𝜑 → (7.348) ∈ ℝ)
1221nnrpd 12437 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
123122relogcld 25258 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
1241nnred 11658 . . . . . 6 (𝜑𝑁 ∈ ℝ)
125122rpge0d 12443 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
126124, 125resqrtcld 14789 . . . . 5 (𝜑 → (√‘𝑁) ∈ ℝ)
127122rpsqrtcld 14783 . . . . . 6 (𝜑 → (√‘𝑁) ∈ ℝ+)
128127rpne0d 12444 . . . . 5 (𝜑 → (√‘𝑁) ≠ 0)
129123, 126, 128redivcld 11475 . . . 4 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
130121, 129remulcld 10678 . . 3 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
131124resqcld 13627 . . 3 (𝜑 → (𝑁↑2) ∈ ℝ)
132130, 131remulcld 10678 . 2 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
133 0re 10650 . . . . . . . . . . 11 0 ∈ ℝ
134 7re 11736 . . . . . . . . . . . . 13 7 ∈ ℝ
135 9re 11742 . . . . . . . . . . . . . . 15 9 ∈ ℝ
136 5re 11730 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
137136, 136pm3.2i 474 . . . . . . . . . . . . . . . . . 18 (5 ∈ ℝ ∧ 5 ∈ ℝ)
138 dp2cl 30626 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℝ ∧ 5 ∈ ℝ) → 55 ∈ ℝ)
139137, 138ax-mp 5 . . . . . . . . . . . . . . . . 17 55 ∈ ℝ
140135, 139pm3.2i 474 . . . . . . . . . . . . . . . 16 (9 ∈ ℝ ∧ 55 ∈ ℝ)
141 dp2cl 30626 . . . . . . . . . . . . . . . 16 ((9 ∈ ℝ ∧ 55 ∈ ℝ) → 955 ∈ ℝ)
142140, 141ax-mp 5 . . . . . . . . . . . . . . 15 955 ∈ ℝ
143135, 142pm3.2i 474 . . . . . . . . . . . . . 14 (9 ∈ ℝ ∧ 955 ∈ ℝ)
144 dp2cl 30626 . . . . . . . . . . . . . 14 ((9 ∈ ℝ ∧ 955 ∈ ℝ) → 9955 ∈ ℝ)
145143, 144ax-mp 5 . . . . . . . . . . . . 13 9955 ∈ ℝ
146134, 145pm3.2i 474 . . . . . . . . . . . 12 (7 ∈ ℝ ∧ 9955 ∈ ℝ)
147 dp2cl 30626 . . . . . . . . . . . 12 ((7 ∈ ℝ ∧ 9955 ∈ ℝ) → 79955 ∈ ℝ)
148146, 147ax-mp 5 . . . . . . . . . . 11 79955 ∈ ℝ
149133, 148pm3.2i 474 . . . . . . . . . 10 (0 ∈ ℝ ∧ 79955 ∈ ℝ)
150 dp2cl 30626 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 79955 ∈ ℝ) → 079955 ∈ ℝ)
151149, 150ax-mp 5 . . . . . . . . 9 079955 ∈ ℝ
152 dpcl 30637 . . . . . . . . 9 ((1 ∈ ℕ0079955 ∈ ℝ) → (1.079955) ∈ ℝ)
15356, 151, 152mp2an 691 . . . . . . . 8 (1.079955) ∈ ℝ
154153a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ)
155154resqcld 13627 . . . . . 6 (𝜑 → ((1.079955)↑2) ∈ ℝ)
156 1re 10648 . . . . . . . . . . . 12 1 ∈ ℝ
157156, 111pm3.2i 474 . . . . . . . . . . 11 (1 ∈ ℝ ∧ 4 ∈ ℝ)
158 dp2cl 30626 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 4 ∈ ℝ) → 14 ∈ ℝ)
159157, 158ax-mp 5 . . . . . . . . . 10 14 ∈ ℝ
160111, 159pm3.2i 474 . . . . . . . . 9 (4 ∈ ℝ ∧ 14 ∈ ℝ)
161 dp2cl 30626 . . . . . . . . 9 ((4 ∈ ℝ ∧ 14 ∈ ℝ) → 414 ∈ ℝ)
162160, 161ax-mp 5 . . . . . . . 8 414 ∈ ℝ
163 dpcl 30637 . . . . . . . 8 ((1 ∈ ℕ0414 ∈ ℝ) → (1.414) ∈ ℝ)
16456, 162, 163mp2an 691 . . . . . . 7 (1.414) ∈ ℝ
165164a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ)
166155, 165remulcld 10678 . . . . 5 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
16736, 47remulcld 10678 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
16824, 167remulcld 10678 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
1698, 168fsumrecl 15103 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
170166, 169remulcld 10678 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
17155, 108remulcld 10678 . . . . 5 (𝜑 → (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
172166, 171remulcld 10678 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
173 hgt750leme.1 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
174 hgt750leme.2 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
1758, 154, 165, 26, 37, 23, 35, 46, 173, 174hgt750lemf 32100 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
176 hgt750leme.o . . . . . 6 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
177 2re 11717 . . . . . . . 8 2 ∈ ℝ
178177a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
179 10nn0 12124 . . . . . . . . . 10 10 ∈ ℕ0
180 2nn0 11920 . . . . . . . . . . 11 2 ∈ ℕ0
181180, 58deccl 12121 . . . . . . . . . 10 27 ∈ ℕ0
182179, 181nn0expcli 13471 . . . . . . . . 9 (10↑27) ∈ ℕ0
183182nn0rei 11914 . . . . . . . 8 (10↑27) ∈ ℝ
184183a1i 11 . . . . . . 7 (𝜑 → (10↑27) ∈ ℝ)
185179numexp1 16423 . . . . . . . . . 10 (10↑1) = 10
186179nn0rei 11914 . . . . . . . . . 10 10 ∈ ℝ
187185, 186eqeltri 2886 . . . . . . . . 9 (10↑1) ∈ ℝ
188187a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ∈ ℝ)
189 1nn 11654 . . . . . . . . . . 11 1 ∈ ℕ
190 2lt9 11848 . . . . . . . . . . . 12 2 < 9
191177, 135, 190ltleii 10770 . . . . . . . . . . 11 2 ≤ 9
192189, 57, 180, 191declei 12142 . . . . . . . . . 10 2 ≤ 10
193192, 185breqtrri 5061 . . . . . . . . 9 2 ≤ (10↑1)
194193a1i 11 . . . . . . . 8 (𝜑 → 2 ≤ (10↑1))
195 1z 12020 . . . . . . . . . . . 12 1 ∈ ℤ
196181nn0zi 12015 . . . . . . . . . . . 12 27 ∈ ℤ
197186, 195, 1963pm3.2i 1336 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ)
198 1lt10 12245 . . . . . . . . . . 11 1 < 10
199197, 198pm3.2i 474 . . . . . . . . . 10 ((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10)
200 2nn 11716 . . . . . . . . . . 11 2 ∈ ℕ
201 1lt9 11849 . . . . . . . . . . . 12 1 < 9
202156, 135, 201ltleii 10770 . . . . . . . . . . 11 1 ≤ 9
203200, 58, 56, 202declei 12142 . . . . . . . . . 10 1 ≤ 27
204 leexp2 13551 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) → (1 ≤ 27 ↔ (10↑1) ≤ (10↑27)))
205204biimpa 480 . . . . . . . . . 10 ((((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) ∧ 1 ≤ 27) → (10↑1) ≤ (10↑27))
206199, 203, 205mp2an 691 . . . . . . . . 9 (10↑1) ≤ (10↑27)
207206a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ≤ (10↑27))
208178, 188, 184, 194, 207letrd 10804 . . . . . . 7 (𝜑 → 2 ≤ (10↑27))
209 hgt750leme.0 . . . . . . 7 (𝜑 → (10↑27) ≤ 𝑁)
210178, 184, 124, 208, 209letrd 10804 . . . . . 6 (𝜑 → 2 ≤ 𝑁)
211 eqid 2798 . . . . . 6 (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) = (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
212176, 1, 210, 86, 211hgt750lema 32104 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
213 2z 12022 . . . . . . . . 9 2 ∈ ℤ
214213a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
21570, 214rpexpcld 13624 . . . . . . 7 (𝜑 → ((1.079955)↑2) ∈ ℝ+)
216215, 80rpmulcld 12455 . . . . . 6 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ+)
217169, 171, 216lemul2d 12483 . . . . 5 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))))
218212, 217mpbid 235 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
21953, 170, 172, 175, 218letrd 10804 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
220154recnd 10676 . . . . . 6 (𝜑 → (1.079955) ∈ ℂ)
221220sqcld 13524 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℂ)
222165recnd 10676 . . . . 5 (𝜑 → (1.414) ∈ ℂ)
223221, 222mulcld 10668 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
224 3cn 11724 . . . . 5 3 ∈ ℂ
225224a1i 11 . . . 4 (𝜑 → 3 ∈ ℂ)
226108recnd 10676 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
227223, 225, 226mul12d 10856 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) = (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
228219, 227breqtrd 5060 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
229 fzfi 13355 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
230 diffi 8752 . . . . . . . . . . 11 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
231229, 230ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ ℙ) ∈ Fin
232 snfi 8595 . . . . . . . . . 10 {2} ∈ Fin
233 unfi 8787 . . . . . . . . . 10 ((((1...𝑁) ∖ ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
234231, 232, 233mp2an 691 . . . . . . . . 9 (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin
235234a1i 11 . . . . . . . 8 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
2369a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → Λ:ℕ⟶ℝ)
237 fz1ssnn 12953 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
238237a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ⊆ ℕ)
239238ssdifssd 4073 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
240200a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
241240snssd 4705 . . . . . . . . . . 11 (𝜑 → {2} ⊆ ℕ)
242239, 241unssd 4116 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
243242sselda 3917 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈ ℕ)
244236, 243ffvelrnd 6839 . . . . . . . 8 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℝ)
245235, 244fsumrecl 15103 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) ∈ ℝ)
246 chpvalz 32075 . . . . . . . . 9 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
24712, 246syl 17 . . . . . . . 8 (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
248 chpf 25752 . . . . . . . . . 10 ψ:ℝ⟶ℝ
249248a1i 11 . . . . . . . . 9 (𝜑 → ψ:ℝ⟶ℝ)
250249, 124ffvelrnd 6839 . . . . . . . 8 (𝜑 → (ψ‘𝑁) ∈ ℝ)
251247, 250eqeltrrd 2891 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ)
252245, 251remulcld 10678 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ∈ ℝ)
253123, 252remulcld 10678 . . . . 5 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ∈ ℝ)
25482, 253remulcld 10678 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ∈ ℝ)
25555, 254remulcld 10678 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ∈ ℝ)
256176, 1, 210, 86hgt750lemb 32103 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
257108, 253, 216lemul2d 12483 . . . . 5 (𝜑 → (Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
258256, 257mpbid 235 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))
259 3rp 12403 . . . . . 6 3 ∈ ℝ+
260259a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ+)
261109, 254, 260lemul2d 12483 . . . 4 (𝜑 → (((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))))
262258, 261mpbid 235 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
263 6re 11733 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
264263, 54pm3.2i 474 . . . . . . . . . . . . . . . 16 (6 ∈ ℝ ∧ 3 ∈ ℝ)
265 dp2cl 30626 . . . . . . . . . . . . . . . 16 ((6 ∈ ℝ ∧ 3 ∈ ℝ) → 63 ∈ ℝ)
266264, 265ax-mp 5 . . . . . . . . . . . . . . 15 63 ∈ ℝ
267177, 266pm3.2i 474 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 63 ∈ ℝ)
268 dp2cl 30626 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 63 ∈ ℝ) → 263 ∈ ℝ)
269267, 268ax-mp 5 . . . . . . . . . . . . 13 263 ∈ ℝ
270111, 269pm3.2i 474 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 263 ∈ ℝ)
271 dp2cl 30626 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 263 ∈ ℝ) → 4263 ∈ ℝ)
272270, 271ax-mp 5 . . . . . . . . . . 11 4263 ∈ ℝ
273 dpcl 30637 . . . . . . . . . . 11 ((1 ∈ ℕ04263 ∈ ℝ) → (1.4263) ∈ ℝ)
27456, 272, 273mp2an 691 . . . . . . . . . 10 (1.4263) ∈ ℝ
275274a1i 11 . . . . . . . . 9 (𝜑 → (1.4263) ∈ ℝ)
276275, 126remulcld 10678 . . . . . . . 8 (𝜑 → ((1.4263) · (√‘𝑁)) ∈ ℝ)
277112, 54pm3.2i 474 . . . . . . . . . . . . . . . . . 18 (8 ∈ ℝ ∧ 3 ∈ ℝ)
278 dp2cl 30626 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℝ ∧ 3 ∈ ℝ) → 83 ∈ ℝ)
279277, 278ax-mp 5 . . . . . . . . . . . . . . . . 17 83 ∈ ℝ
280112, 279pm3.2i 474 . . . . . . . . . . . . . . . 16 (8 ∈ ℝ ∧ 83 ∈ ℝ)
281 dp2cl 30626 . . . . . . . . . . . . . . . 16 ((8 ∈ ℝ ∧ 83 ∈ ℝ) → 883 ∈ ℝ)
282280, 281ax-mp 5 . . . . . . . . . . . . . . 15 883 ∈ ℝ
28354, 282pm3.2i 474 . . . . . . . . . . . . . 14 (3 ∈ ℝ ∧ 883 ∈ ℝ)
284 dp2cl 30626 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 883 ∈ ℝ) → 3883 ∈ ℝ)
285283, 284ax-mp 5 . . . . . . . . . . . . 13 3883 ∈ ℝ
286133, 285pm3.2i 474 . . . . . . . . . . . 12 (0 ∈ ℝ ∧ 3883 ∈ ℝ)
287 dp2cl 30626 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 3883 ∈ ℝ) → 03883 ∈ ℝ)
288286, 287ax-mp 5 . . . . . . . . . . 11 03883 ∈ ℝ
289 dpcl 30637 . . . . . . . . . . 11 ((1 ∈ ℕ003883 ∈ ℝ) → (1.03883) ∈ ℝ)
29056, 288, 289mp2an 691 . . . . . . . . . 10 (1.03883) ∈ ℝ
291290a1i 11 . . . . . . . . 9 (𝜑 → (1.03883) ∈ ℝ)
292291, 124remulcld 10678 . . . . . . . 8 (𝜑 → ((1.03883) · 𝑁) ∈ ℝ)
293276, 292remulcld 10678 . . . . . . 7 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ∈ ℝ)
294123, 293remulcld 10678 . . . . . 6 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ∈ ℝ)
29582, 294remulcld 10678 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ∈ ℝ)
29655, 295remulcld 10678 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ∈ ℝ)
297 vmage0 25750 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 0 ≤ (Λ‘𝑖))
298243, 297syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 0 ≤ (Λ‘𝑖))
299235, 244, 298fsumge0 15162 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖))
3001, 209hgt750lemd 32095 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
301 fzfid 13356 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
3029a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
303238sselda 3917 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
304302, 303ffvelrnd 6839 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
305 vmage0 25750 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 0 ≤ (Λ‘𝑗))
306303, 305syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ (Λ‘𝑗))
307301, 304, 306fsumge0 15162 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
3081hgt750lemc 32094 . . . . . . . . 9 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
309245, 276, 251, 292, 299, 300, 307, 308ltmul12ad 11588 . . . . . . . 8 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) < (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
310252, 293, 309ltled 10795 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
311156a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
312 1lt2 11814 . . . . . . . . . . 11 1 < 2
313312a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
314311, 178, 124, 313, 210ltletrd 10807 . . . . . . . . 9 (𝜑 → 1 < 𝑁)
315124, 314rplogcld 25264 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ+)
316252, 293, 315lemul2d 12483 . . . . . . 7 (𝜑 → ((Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ↔ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
317310, 316mpbid 235 . . . . . 6 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))
318253, 294, 216lemul2d 12483 . . . . . 6 (𝜑 → (((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ↔ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
319317, 318mpbid 235 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
320254, 295, 260lemul2d 12483 . . . . 5 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))))
321319, 320mpbid 235 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
322153resqcli 13565 . . . . . . . . . 10 ((1.079955)↑2) ∈ ℝ
323322, 164remulcli 10664 . . . . . . . . 9 (((1.079955)↑2) · (1.414)) ∈ ℝ
324274, 290remulcli 10664 . . . . . . . . 9 ((1.4263) · (1.03883)) ∈ ℝ
325323, 324remulcli 10664 . . . . . . . 8 ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℝ
32654, 325remulcli 10664 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ
327 hgt750lem2 32099 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) < (7.348)
328326, 120, 327ltleii 10770 . . . . . 6 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348)
329326a1i 11 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ)
330315, 127rpdivcld 12456 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ+)
331122, 214rpexpcld 13624 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
332330, 331rpmulcld 12455 . . . . . . 7 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) ∈ ℝ+)
333329, 121, 332lemul1d 12482 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348) ↔ ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))))
334328, 333mpbii 236 . . . . 5 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
335275recnd 10676 . . . . . . . . . . . . . 14 (𝜑 → (1.4263) ∈ ℂ)
336126recnd 10676 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑁) ∈ ℂ)
337291recnd 10676 . . . . . . . . . . . . . 14 (𝜑 → (1.03883) ∈ ℂ)
338124recnd 10676 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
339335, 336, 337, 338mul4d 10859 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) = (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)))
340339oveq2d 7161 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))))
341123recnd 10676 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℂ)
342335, 337mulcld 10668 . . . . . . . . . . . . . 14 (𝜑 → ((1.4263) · (1.03883)) ∈ ℂ)
343336, 338mulcld 10668 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑁) · 𝑁) ∈ ℂ)
344342, 343mulcld 10668 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) ∈ ℂ)
345341, 344mulcomd 10669 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
346340, 345eqtrd 2833 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
347342, 343, 341mulassd 10671 . . . . . . . . . . 11 (𝜑 → ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
348346, 347eqtrd 2833 . . . . . . . . . 10 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
349348oveq2d 7161 . . . . . . . . 9 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35082recnd 10676 . . . . . . . . . 10 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
351343, 341mulcld 10668 . . . . . . . . . 10 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) ∈ ℂ)
352350, 342, 351mulassd 10671 . . . . . . . . 9 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
353349, 352eqtr4d 2836 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
354353oveq2d 7161 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35555recnd 10676 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
356350, 342mulcld 10668 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℂ)
357355, 356, 351mulassd 10671 . . . . . . 7 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
358354, 357eqtr4d 2836 . . . . . 6 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
359131recnd 10676 . . . . . . . . 9 (𝜑 → (𝑁↑2) ∈ ℂ)
360341, 336, 359, 128div32d 11446 . . . . . . . 8 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) = ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))))
361359, 336, 128divcld 11423 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) ∈ ℂ)
362341, 361mulcomd 10669 . . . . . . . 8 (𝜑 → ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))) = (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)))
363338sqvald 13523 . . . . . . . . . . . 12 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
364363oveq1d 7160 . . . . . . . . . . 11 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((𝑁 · 𝑁) / (√‘𝑁)))
365338, 338, 336, 128divassd 11458 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝑁) / (√‘𝑁)) = (𝑁 · (𝑁 / (√‘𝑁))))
366 divsqrtid 32041 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 / (√‘𝑁)) = (√‘𝑁))
367122, 366syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 / (√‘𝑁)) = (√‘𝑁))
368367oveq2d 7161 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑁 / (√‘𝑁))) = (𝑁 · (√‘𝑁)))
369364, 365, 3683eqtrd 2837 . . . . . . . . . 10 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = (𝑁 · (√‘𝑁)))
370338, 336mulcomd 10669 . . . . . . . . . 10 (𝜑 → (𝑁 · (√‘𝑁)) = ((√‘𝑁) · 𝑁))
371369, 370eqtrd 2833 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((√‘𝑁) · 𝑁))
372371oveq1d 7160 . . . . . . . 8 (𝜑 → (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)) = (((√‘𝑁) · 𝑁) · (log‘𝑁)))
373360, 362, 3723eqtrrd 2838 . . . . . . 7 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) = (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))
374373oveq2d 7161 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
375358, 374eqtrd 2833 . . . . 5 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
376121recnd 10676 . . . . . 6 (𝜑 → (7.348) ∈ ℂ)
377129recnd 10676 . . . . . 6 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℂ)
378376, 377, 359mulassd 10671 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) = ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
379334, 375, 3783brtr4d 5066 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
380255, 296, 132, 321, 379letrd 10804 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
381110, 255, 132, 262, 380letrd 10804 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
38253, 110, 132, 228, 381letrd 10804 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3110   ∖ cdif 3880   ∪ cun 3881   ∩ cin 3882   ⊆ wss 3883  ifcif 4428  {csn 4528  {cpr 4530  {ctp 4532   class class class wbr 5034   ↦ cmpt 5114   I cid 5428   ↾ cres 5525   ∘ ccom 5527  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  Fincfn 8510  ℂcc 10542  ℝcr 10543  0cc0 10544  1c1 10545   · cmul 10549  +∞cpnf 10679   < clt 10682   ≤ cle 10683   / cdiv 11304  ℕcn 11643  2c2 11698  3c3 11699  4c4 11700  5c5 11701  6c6 11702  7c7 11703  8c8 11704  9c9 11705  ℕ0cn0 11903  ℤcz 11989  ;cdc 12106  ℝ+crp 12397  [,)cico 12748  ...cfz 12905  ..^cfzo 13048  ↑cexp 13445  √csqrt 14604  Σcsu 15054   ∥ cdvds 15619  ℙcprime 16025  pmTrspcpmtr 18582  logclog 25190  Λcvma 25721  ψcchp 25722  _cdp2 30617  .cdp 30634  reprcrepr 32055 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-reg 9058  ax-inf2 9106  ax-ac2 9892  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624  ax-ros335 32092  ax-ros336 32093 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-r1 9195  df-rank 9196  df-dju 9332  df-card 9370  df-ac 9545  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ioo 12750  df-ioc 12751  df-ico 12752  df-icc 12753  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-seq 13385  df-exp 13446  df-fac 13650  df-bc 13679  df-hash 13707  df-shft 14438  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-limsup 14840  df-clim 14857  df-rlim 14858  df-sum 15055  df-prod 15272  df-ef 15433  df-sin 15435  df-cos 15436  df-tan 15437  df-pi 15438  df-dvds 15620  df-gcd 15854  df-prm 16026  df-pc 16184  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-rest 16708  df-topn 16709  df-0g 16727  df-gsum 16728  df-topgen 16729  df-pt 16730  df-prds 16733  df-xrs 16787  df-qtop 16792  df-imas 16793  df-xps 16795  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-mulg 18238  df-cntz 18460  df-pmtr 18583  df-cmn 18921  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-fbas 20109  df-fg 20110  df-cnfld 20113  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-cld 21665  df-ntr 21666  df-cls 21667  df-nei 21744  df-lp 21782  df-perf 21783  df-cn 21873  df-cnp 21874  df-haus 21961  df-cmp 22033  df-tx 22208  df-hmeo 22401  df-fil 22492  df-fm 22584  df-flim 22585  df-flf 22586  df-xms 22968  df-ms 22969  df-tms 22970  df-cncf 23524  df-limc 24510  df-dv 24511  df-ulm 25016  df-log 25192  df-atan 25497  df-cht 25726  df-vma 25727  df-chp 25728  df-dp2 30618  df-dp 30635  df-repr 32056 This theorem is referenced by:  tgoldbachgtde  32107
 Copyright terms: Public domain W3C validator