Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3rn Structured version   Visualization version   GIF version

Theorem s3rn 30971
Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s3rn.i (𝜑𝐼𝐷)
s3rn.j (𝜑𝐽𝐷)
s3rn.k (𝜑𝐾𝐷)
Assertion
Ref Expression
s3rn (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})

Proof of Theorem s3rn
StepHypRef Expression
1 imadmrn 5956 . 2 (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = ran ⟨“𝐼𝐽𝐾”⟩
2 s3rn.i . . . . . . 7 (𝜑𝐼𝐷)
3 s3rn.j . . . . . . 7 (𝜑𝐽𝐷)
4 s3rn.k . . . . . . 7 (𝜑𝐾𝐷)
52, 3, 4s3cld 14469 . . . . . 6 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
6 wrdfn 14115 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
7 s3len 14491 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
87oveq2i 7245 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
9 fzo0to3tp 13357 . . . . . . . . 9 (0..^3) = {0, 1, 2}
108, 9eqtri 2767 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
1110fneq2i 6497 . . . . . . 7 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) ↔ ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1211biimpi 219 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
135, 6, 123syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1413fndmd 6504 . . . 4 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
1514imaeq2d 5946 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}))
16 c0ex 10856 . . . . . 6 0 ∈ V
1716tpid1 4700 . . . . 5 0 ∈ {0, 1, 2}
1817a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1, 2})
19 1ex 10858 . . . . . 6 1 ∈ V
2019tpid2 4702 . . . . 5 1 ∈ {0, 1, 2}
2120a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1, 2})
22 2ex 11936 . . . . . 6 2 ∈ V
2322tpid3 4705 . . . . 5 2 ∈ {0, 1, 2}
2423a1i 11 . . . 4 (𝜑 → 2 ∈ {0, 1, 2})
2513, 18, 21, 24fnimatp 30765 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}) = {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)})
26 s3fv0 14488 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
272, 26syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
28 s3fv1 14489 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
293, 28syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
30 s3fv2 14490 . . . . 5 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
314, 30syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3227, 29, 31tpeq123d 4680 . . 3 (𝜑 → {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)} = {𝐼, 𝐽, 𝐾})
3315, 25, 323eqtrd 2783 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = {𝐼, 𝐽, 𝐾})
341, 33eqtr3id 2794 1 (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {ctp 4561  dom cdm 5568  ran crn 5569  cima 5571   Fn wfn 6395  cfv 6400  (class class class)co 7234  0cc0 10758  1c1 10759  2c2 11914  3c3 11915  ..^cfzo 13267  chash 13928  Word cword 14101  ⟨“cs3 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-card 9584  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-nn 11860  df-2 11922  df-3 11923  df-n0 12120  df-z 12206  df-uz 12468  df-fz 13125  df-fzo 13268  df-hash 13929  df-word 14102  df-concat 14158  df-s1 14185  df-s2 14445  df-s3 14446
This theorem is referenced by:  cyc3co2  31157
  Copyright terms: Public domain W3C validator