Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > s3rn | Structured version Visualization version GIF version |
Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s3rn.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s3rn.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s3rn.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
s3rn | ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5968 | . 2 ⊢ (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = ran 〈“𝐼𝐽𝐾”〉 | |
2 | s3rn.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
3 | s3rn.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
4 | s3rn.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
5 | 2, 3, 4 | s3cld 14513 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
6 | wrdfn 14159 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → 〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉))) | |
7 | s3len 14535 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
8 | 7 | oveq2i 7266 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = (0..^3) |
9 | fzo0to3tp 13401 | . . . . . . . . 9 ⊢ (0..^3) = {0, 1, 2} | |
10 | 8, 9 | eqtri 2766 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = {0, 1, 2} |
11 | 10 | fneq2i 6515 | . . . . . . 7 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) ↔ 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
12 | 11 | biimpi 215 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
13 | 5, 6, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
14 | 13 | fndmd 6522 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 = {0, 1, 2}) |
15 | 14 | imaeq2d 5958 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2})) |
16 | c0ex 10900 | . . . . . 6 ⊢ 0 ∈ V | |
17 | 16 | tpid1 4701 | . . . . 5 ⊢ 0 ∈ {0, 1, 2} |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1, 2}) |
19 | 1ex 10902 | . . . . . 6 ⊢ 1 ∈ V | |
20 | 19 | tpid2 4703 | . . . . 5 ⊢ 1 ∈ {0, 1, 2} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1, 2}) |
22 | 2ex 11980 | . . . . . 6 ⊢ 2 ∈ V | |
23 | 22 | tpid3 4706 | . . . . 5 ⊢ 2 ∈ {0, 1, 2} |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ {0, 1, 2}) |
25 | 13, 18, 21, 24 | fnimatp 30916 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2}) = {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)}) |
26 | s3fv0 14532 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
27 | 2, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
28 | s3fv1 14533 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
29 | 3, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
30 | s3fv2 14534 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
31 | 4, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
32 | 27, 29, 31 | tpeq123d 4681 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)} = {𝐼, 𝐽, 𝐾}) |
33 | 15, 25, 32 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = {𝐼, 𝐽, 𝐾}) |
34 | 1, 33 | eqtr3id 2793 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {ctp 4562 dom cdm 5580 ran crn 5581 “ cima 5583 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 2c2 11958 3c3 11959 ..^cfzo 13311 ♯chash 13972 Word cword 14145 〈“cs3 14483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 |
This theorem is referenced by: cyc3co2 31309 |
Copyright terms: Public domain | W3C validator |