Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3rn Structured version   Visualization version   GIF version

Theorem s3rn 32663
Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s3rn.i (𝜑𝐼𝐷)
s3rn.j (𝜑𝐽𝐷)
s3rn.k (𝜑𝐾𝐷)
Assertion
Ref Expression
s3rn (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})

Proof of Theorem s3rn
StepHypRef Expression
1 imadmrn 6067 . 2 (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = ran ⟨“𝐼𝐽𝐾”⟩
2 s3rn.i . . . . . . 7 (𝜑𝐼𝐷)
3 s3rn.j . . . . . . 7 (𝜑𝐽𝐷)
4 s3rn.k . . . . . . 7 (𝜑𝐾𝐷)
52, 3, 4s3cld 14849 . . . . . 6 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
6 wrdfn 14504 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
7 s3len 14871 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
87oveq2i 7425 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
9 fzo0to3tp 13744 . . . . . . . . 9 (0..^3) = {0, 1, 2}
108, 9eqtri 2756 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
1110fneq2i 6646 . . . . . . 7 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) ↔ ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1211biimpi 215 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
135, 6, 123syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1413fndmd 6653 . . . 4 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
1514imaeq2d 6057 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}))
16 c0ex 11232 . . . . . 6 0 ∈ V
1716tpid1 4768 . . . . 5 0 ∈ {0, 1, 2}
1817a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1, 2})
19 1ex 11234 . . . . . 6 1 ∈ V
2019tpid2 4770 . . . . 5 1 ∈ {0, 1, 2}
2120a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1, 2})
22 2ex 12313 . . . . . 6 2 ∈ V
2322tpid3 4773 . . . . 5 2 ∈ {0, 1, 2}
2423a1i 11 . . . 4 (𝜑 → 2 ∈ {0, 1, 2})
2513, 18, 21, 24fnimatp 32456 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}) = {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)})
26 s3fv0 14868 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
272, 26syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
28 s3fv1 14869 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
293, 28syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
30 s3fv2 14870 . . . . 5 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
314, 30syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3227, 29, 31tpeq123d 4748 . . 3 (𝜑 → {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)} = {𝐼, 𝐽, 𝐾})
3315, 25, 323eqtrd 2772 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = {𝐼, 𝐽, 𝐾})
341, 33eqtr3id 2782 1 (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {ctp 4628  dom cdm 5672  ran crn 5673  cima 5675   Fn wfn 6537  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133  2c2 12291  3c3 12292  ..^cfzo 13653  chash 14315  Word cword 14490  ⟨“cs3 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-concat 14547  df-s1 14572  df-s2 14825  df-s3 14826
This theorem is referenced by:  cyc3co2  32855
  Copyright terms: Public domain W3C validator