![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > s3rn | Structured version Visualization version GIF version |
Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
s3rn.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
s3rn.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
s3rn.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
s3rn | ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6074 | . 2 ⊢ (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = ran 〈“𝐼𝐽𝐾”〉 | |
2 | s3rn.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
3 | s3rn.j | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
4 | s3rn.k | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
5 | 2, 3, 4 | s3cld 14859 | . . . . . 6 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
6 | wrdfn 14514 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → 〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉))) | |
7 | s3len 14881 | . . . . . . . . . 10 ⊢ (♯‘〈“𝐼𝐽𝐾”〉) = 3 | |
8 | 7 | oveq2i 7430 | . . . . . . . . 9 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = (0..^3) |
9 | fzo0to3tp 13753 | . . . . . . . . 9 ⊢ (0..^3) = {0, 1, 2} | |
10 | 8, 9 | eqtri 2753 | . . . . . . . 8 ⊢ (0..^(♯‘〈“𝐼𝐽𝐾”〉)) = {0, 1, 2} |
11 | 10 | fneq2i 6653 | . . . . . . 7 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) ↔ 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
12 | 11 | biimpi 215 | . . . . . 6 ⊢ (〈“𝐼𝐽𝐾”〉 Fn (0..^(♯‘〈“𝐼𝐽𝐾”〉)) → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
13 | 5, 6, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 Fn {0, 1, 2}) |
14 | 13 | fndmd 6660 | . . . 4 ⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 = {0, 1, 2}) |
15 | 14 | imaeq2d 6064 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2})) |
16 | c0ex 11240 | . . . . . 6 ⊢ 0 ∈ V | |
17 | 16 | tpid1 4774 | . . . . 5 ⊢ 0 ∈ {0, 1, 2} |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ {0, 1, 2}) |
19 | 1ex 11242 | . . . . . 6 ⊢ 1 ∈ V | |
20 | 19 | tpid2 4776 | . . . . 5 ⊢ 1 ∈ {0, 1, 2} |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ {0, 1, 2}) |
22 | 2ex 12322 | . . . . . 6 ⊢ 2 ∈ V | |
23 | 22 | tpid3 4779 | . . . . 5 ⊢ 2 ∈ {0, 1, 2} |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ {0, 1, 2}) |
25 | 13, 18, 21, 24 | fnimatp 32544 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ {0, 1, 2}) = {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)}) |
26 | s3fv0 14878 | . . . . 5 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) | |
27 | 2, 26 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
28 | s3fv1 14879 | . . . . 5 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) | |
29 | 3, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
30 | s3fv2 14880 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) | |
31 | 4, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
32 | 27, 29, 31 | tpeq123d 4754 | . . 3 ⊢ (𝜑 → {(〈“𝐼𝐽𝐾”〉‘0), (〈“𝐼𝐽𝐾”〉‘1), (〈“𝐼𝐽𝐾”〉‘2)} = {𝐼, 𝐽, 𝐾}) |
33 | 15, 25, 32 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉 “ dom 〈“𝐼𝐽𝐾”〉) = {𝐼, 𝐽, 𝐾}) |
34 | 1, 33 | eqtr3id 2779 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {ctp 4634 dom cdm 5678 ran crn 5679 “ cima 5681 Fn wfn 6544 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 2c2 12300 3c3 12301 ..^cfzo 13662 ♯chash 14325 Word cword 14500 〈“cs3 14829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-s2 14835 df-s3 14836 |
This theorem is referenced by: cyc3co2 32953 |
Copyright terms: Public domain | W3C validator |