Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3rn Structured version   Visualization version   GIF version

Theorem s3rn 31220
Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s3rn.i (𝜑𝐼𝐷)
s3rn.j (𝜑𝐽𝐷)
s3rn.k (𝜑𝐾𝐷)
Assertion
Ref Expression
s3rn (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})

Proof of Theorem s3rn
StepHypRef Expression
1 imadmrn 5979 . 2 (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = ran ⟨“𝐼𝐽𝐾”⟩
2 s3rn.i . . . . . . 7 (𝜑𝐼𝐷)
3 s3rn.j . . . . . . 7 (𝜑𝐽𝐷)
4 s3rn.k . . . . . . 7 (𝜑𝐾𝐷)
52, 3, 4s3cld 14585 . . . . . 6 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
6 wrdfn 14231 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
7 s3len 14607 . . . . . . . . . 10 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
87oveq2i 7286 . . . . . . . . 9 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
9 fzo0to3tp 13473 . . . . . . . . 9 (0..^3) = {0, 1, 2}
108, 9eqtri 2766 . . . . . . . 8 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
1110fneq2i 6531 . . . . . . 7 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) ↔ ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1211biimpi 215 . . . . . 6 (⟨“𝐼𝐽𝐾”⟩ Fn (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
135, 6, 123syl 18 . . . . 5 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ Fn {0, 1, 2})
1413fndmd 6538 . . . 4 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
1514imaeq2d 5969 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}))
16 c0ex 10969 . . . . . 6 0 ∈ V
1716tpid1 4704 . . . . 5 0 ∈ {0, 1, 2}
1817a1i 11 . . . 4 (𝜑 → 0 ∈ {0, 1, 2})
19 1ex 10971 . . . . . 6 1 ∈ V
2019tpid2 4706 . . . . 5 1 ∈ {0, 1, 2}
2120a1i 11 . . . 4 (𝜑 → 1 ∈ {0, 1, 2})
22 2ex 12050 . . . . . 6 2 ∈ V
2322tpid3 4709 . . . . 5 2 ∈ {0, 1, 2}
2423a1i 11 . . . 4 (𝜑 → 2 ∈ {0, 1, 2})
2513, 18, 21, 24fnimatp 31014 . . 3 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ {0, 1, 2}) = {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)})
26 s3fv0 14604 . . . . 5 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
272, 26syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
28 s3fv1 14605 . . . . 5 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
293, 28syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
30 s3fv2 14606 . . . . 5 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
314, 30syl 17 . . . 4 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3227, 29, 31tpeq123d 4684 . . 3 (𝜑 → {(⟨“𝐼𝐽𝐾”⟩‘0), (⟨“𝐼𝐽𝐾”⟩‘1), (⟨“𝐼𝐽𝐾”⟩‘2)} = {𝐼, 𝐽, 𝐾})
3315, 25, 323eqtrd 2782 . 2 (𝜑 → (⟨“𝐼𝐽𝐾”⟩ “ dom ⟨“𝐼𝐽𝐾”⟩) = {𝐼, 𝐽, 𝐾})
341, 33eqtr3id 2792 1 (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {ctp 4565  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  2c2 12028  3c3 12029  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs3 14555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562
This theorem is referenced by:  cyc3co2  31407
  Copyright terms: Public domain W3C validator