| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3rn | Structured version Visualization version GIF version | ||
| Description: Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof shortened by AV, 1-Aug-2025.) |
| Ref | Expression |
|---|---|
| s2rn.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| s2rn.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| s3rn.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s3rn | ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s3 14774 | . . . 4 ⊢ 〈“𝐼𝐽𝐾”〉 = (〈“𝐼𝐽”〉 ++ 〈“𝐾”〉) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 = (〈“𝐼𝐽”〉 ++ 〈“𝐾”〉)) |
| 3 | 2 | rneqd 5884 | . 2 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = ran (〈“𝐼𝐽”〉 ++ 〈“𝐾”〉)) |
| 4 | s2cli 14805 | . . . 4 ⊢ 〈“𝐼𝐽”〉 ∈ Word V | |
| 5 | s1cli 14530 | . . . 4 ⊢ 〈“𝐾”〉 ∈ Word V | |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (〈“𝐼𝐽”〉 ∈ Word V ∧ 〈“𝐾”〉 ∈ Word V) |
| 7 | ccatrn 14514 | . . 3 ⊢ ((〈“𝐼𝐽”〉 ∈ Word V ∧ 〈“𝐾”〉 ∈ Word V) → ran (〈“𝐼𝐽”〉 ++ 〈“𝐾”〉) = (ran 〈“𝐼𝐽”〉 ∪ ran 〈“𝐾”〉)) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝜑 → ran (〈“𝐼𝐽”〉 ++ 〈“𝐾”〉) = (ran 〈“𝐼𝐽”〉 ∪ ran 〈“𝐾”〉)) |
| 9 | s2rn.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 10 | s2rn.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 11 | 9, 10 | s2rn 14888 | . . . 4 ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
| 12 | s3rn.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
| 13 | s1rn 14524 | . . . . 5 ⊢ (𝐾 ∈ 𝐷 → ran 〈“𝐾”〉 = {𝐾}) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → ran 〈“𝐾”〉 = {𝐾}) |
| 15 | 11, 14 | uneq12d 4122 | . . 3 ⊢ (𝜑 → (ran 〈“𝐼𝐽”〉 ∪ ran 〈“𝐾”〉) = ({𝐼, 𝐽} ∪ {𝐾})) |
| 16 | df-tp 4584 | . . 3 ⊢ {𝐼, 𝐽, 𝐾} = ({𝐼, 𝐽} ∪ {𝐾}) | |
| 17 | 15, 16 | eqtr4di 2782 | . 2 ⊢ (𝜑 → (ran 〈“𝐼𝐽”〉 ∪ ran 〈“𝐾”〉) = {𝐼, 𝐽, 𝐾}) |
| 18 | 3, 8, 17 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {csn 4579 {cpr 4581 {ctp 4583 ran crn 5624 (class class class)co 7353 Word cword 14438 ++ cconcat 14495 〈“cs1 14520 〈“cs2 14766 〈“cs3 14767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 |
| This theorem is referenced by: s7rn 14890 cyc3co2 33095 |
| Copyright terms: Public domain | W3C validator |