Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfzo03 Structured version   Visualization version   GIF version

Theorem prodfzo03 34570
Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
prodfzo03.1 (𝑘 = 0 → 𝐷 = 𝐴)
prodfzo03.2 (𝑘 = 1 → 𝐷 = 𝐵)
prodfzo03.3 (𝑘 = 2 → 𝐷 = 𝐶)
prodfzo03.a ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
prodfzo03 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodfzo03
StepHypRef Expression
1 fzodisjsn 13618 . . . . 5 ((0..^2) ∩ {2}) = ∅
21a1i 11 . . . 4 (𝜑 → ((0..^2) ∩ {2}) = ∅)
3 2p1e3 12283 . . . . . . 7 (2 + 1) = 3
43oveq2i 7364 . . . . . 6 (0..^(2 + 1)) = (0..^3)
5 2eluzge0 12800 . . . . . . 7 2 ∈ (ℤ‘0)
6 fzosplitsn 13696 . . . . . . 7 (2 ∈ (ℤ‘0) → (0..^(2 + 1)) = ((0..^2) ∪ {2}))
75, 6ax-mp 5 . . . . . 6 (0..^(2 + 1)) = ((0..^2) ∪ {2})
84, 7eqtr3i 2754 . . . . 5 (0..^3) = ((0..^2) ∪ {2})
98a1i 11 . . . 4 (𝜑 → (0..^3) = ((0..^2) ∪ {2}))
10 fzofi 13899 . . . . 5 (0..^3) ∈ Fin
1110a1i 11 . . . 4 (𝜑 → (0..^3) ∈ Fin)
12 prodfzo03.a . . . 4 ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
132, 9, 11, 12fprodsplit 15891 . . 3 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷))
14 0ne1 12217 . . . . . 6 0 ≠ 1
15 disjsn2 4666 . . . . . 6 (0 ≠ 1 → ({0} ∩ {1}) = ∅)
1614, 15mp1i 13 . . . . 5 (𝜑 → ({0} ∩ {1}) = ∅)
17 fzo0to2pr 13671 . . . . . . 7 (0..^2) = {0, 1}
18 df-pr 4582 . . . . . . 7 {0, 1} = ({0} ∪ {1})
1917, 18eqtri 2752 . . . . . 6 (0..^2) = ({0} ∪ {1})
2019a1i 11 . . . . 5 (𝜑 → (0..^2) = ({0} ∪ {1}))
21 fzofi 13899 . . . . . 6 (0..^2) ∈ Fin
2221a1i 11 . . . . 5 (𝜑 → (0..^2) ∈ Fin)
23 2z 12525 . . . . . . . . 9 2 ∈ ℤ
24 3z 12526 . . . . . . . . 9 3 ∈ ℤ
25 2re 12220 . . . . . . . . . 10 2 ∈ ℝ
26 3re 12226 . . . . . . . . . 10 3 ∈ ℝ
27 2lt3 12313 . . . . . . . . . 10 2 < 3
2825, 26, 27ltleii 11257 . . . . . . . . 9 2 ≤ 3
29 eluz2 12759 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
3023, 24, 28, 29mpbir3an 1342 . . . . . . . 8 3 ∈ (ℤ‘2)
31 fzoss2 13608 . . . . . . . 8 (3 ∈ (ℤ‘2) → (0..^2) ⊆ (0..^3))
3230, 31ax-mp 5 . . . . . . 7 (0..^2) ⊆ (0..^3)
3332sseli 3933 . . . . . 6 (𝑘 ∈ (0..^2) → 𝑘 ∈ (0..^3))
3433, 12sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ)
3516, 20, 22, 34fprodsplit 15891 . . . 4 (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷))
3635oveq1d 7368 . . 3 (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
3713, 36eqtrd 2764 . 2 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
38 snfi 8975 . . . . 5 {0} ∈ Fin
3938a1i 11 . . . 4 (𝜑 → {0} ∈ Fin)
40 velsn 4595 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
41 prodfzo03.1 . . . . . . 7 (𝑘 = 0 → 𝐷 = 𝐴)
4241adantl 481 . . . . . 6 ((𝜑𝑘 = 0) → 𝐷 = 𝐴)
43 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴)
4412adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ)
4543, 44eqeltrrd 2829 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ)
46 c0ex 11128 . . . . . . . . . . . 12 0 ∈ V
4746tpid1 4722 . . . . . . . . . . 11 0 ∈ {0, 1, 2}
48 fzo0to3tp 13673 . . . . . . . . . . 11 (0..^3) = {0, 1, 2}
4947, 48eleqtrri 2827 . . . . . . . . . 10 0 ∈ (0..^3)
50 eqid 2729 . . . . . . . . . 10 𝐴 = 𝐴
5141eqeq1d 2731 . . . . . . . . . . 11 (𝑘 = 0 → (𝐷 = 𝐴𝐴 = 𝐴))
5251rspcev 3579 . . . . . . . . . 10 ((0 ∈ (0..^3) ∧ 𝐴 = 𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5349, 50, 52mp2an 692 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐴
5453a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5545, 54r19.29a 3137 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5655adantr 480 . . . . . 6 ((𝜑𝑘 = 0) → 𝐴 ∈ ℂ)
5742, 56eqeltrd 2828 . . . . 5 ((𝜑𝑘 = 0) → 𝐷 ∈ ℂ)
5840, 57sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝐷 ∈ ℂ)
5939, 58fprodcl 15877 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ)
60 snfi 8975 . . . . 5 {1} ∈ Fin
6160a1i 11 . . . 4 (𝜑 → {1} ∈ Fin)
62 velsn 4595 . . . . 5 (𝑘 ∈ {1} ↔ 𝑘 = 1)
63 prodfzo03.2 . . . . . . 7 (𝑘 = 1 → 𝐷 = 𝐵)
6463adantl 481 . . . . . 6 ((𝜑𝑘 = 1) → 𝐷 = 𝐵)
65 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
6612adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ)
6765, 66eqeltrrd 2829 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ)
68 1ex 11130 . . . . . . . . . . . 12 1 ∈ V
6968tpid2 4724 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7069, 48eleqtrri 2827 . . . . . . . . . 10 1 ∈ (0..^3)
71 eqid 2729 . . . . . . . . . 10 𝐵 = 𝐵
7263eqeq1d 2731 . . . . . . . . . . 11 (𝑘 = 1 → (𝐷 = 𝐵𝐵 = 𝐵))
7372rspcev 3579 . . . . . . . . . 10 ((1 ∈ (0..^3) ∧ 𝐵 = 𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7470, 71, 73mp2an 692 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐵
7574a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7667, 75r19.29a 3137 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
7776adantr 480 . . . . . 6 ((𝜑𝑘 = 1) → 𝐵 ∈ ℂ)
7864, 77eqeltrd 2828 . . . . 5 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
7962, 78sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {1}) → 𝐷 ∈ ℂ)
8061, 79fprodcl 15877 . . 3 (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ)
81 snfi 8975 . . . . 5 {2} ∈ Fin
8281a1i 11 . . . 4 (𝜑 → {2} ∈ Fin)
83 velsn 4595 . . . . 5 (𝑘 ∈ {2} ↔ 𝑘 = 2)
84 prodfzo03.3 . . . . . . 7 (𝑘 = 2 → 𝐷 = 𝐶)
8584adantl 481 . . . . . 6 ((𝜑𝑘 = 2) → 𝐷 = 𝐶)
86 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶)
8712adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ)
8886, 87eqeltrrd 2829 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ)
89 2ex 12223 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4727 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 48eleqtrri 2827 . . . . . . . . . 10 2 ∈ (0..^3)
92 eqid 2729 . . . . . . . . . 10 𝐶 = 𝐶
9384eqeq1d 2731 . . . . . . . . . . 11 (𝑘 = 2 → (𝐷 = 𝐶𝐶 = 𝐶))
9493rspcev 3579 . . . . . . . . . 10 ((2 ∈ (0..^3) ∧ 𝐶 = 𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9591, 92, 94mp2an 692 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐶
9695a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9788, 96r19.29a 3137 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9897adantr 480 . . . . . 6 ((𝜑𝑘 = 2) → 𝐶 ∈ ℂ)
9985, 98eqeltrd 2828 . . . . 5 ((𝜑𝑘 = 2) → 𝐷 ∈ ℂ)
10083, 99sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {2}) → 𝐷 ∈ ℂ)
10182, 100fprodcl 15877 . . 3 (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ)
10259, 80, 101mulassd 11157 . 2 (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)))
103 0nn0 12417 . . . . 5 0 ∈ ℕ0
104103a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
10541prodsn 15887 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴)
106104, 55, 105syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴)
107 1nn0 12418 . . . . . 6 1 ∈ ℕ0
108107a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10963prodsn 15887 . . . . 5 ((1 ∈ ℕ0𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵)
110108, 76, 109syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵)
111 2nn0 12419 . . . . . 6 2 ∈ ℕ0
112111a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
11384prodsn 15887 . . . . 5 ((2 ∈ ℕ0𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶)
114112, 97, 113syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶)
115110, 114oveq12d 7371 . . 3 (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶))
116106, 115oveq12d 7371 . 2 (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶)))
11737, 102, 1163eqtrd 2768 1 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  {cpr 4581  {ctp 4583   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cuz 12753  ..^cfzo 13575  cprod 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829
This theorem is referenced by:  circlevma  34609  circlemethhgt  34610
  Copyright terms: Public domain W3C validator