Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfzo03 Structured version   Visualization version   GIF version

Theorem prodfzo03 32689
Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
prodfzo03.1 (𝑘 = 0 → 𝐷 = 𝐴)
prodfzo03.2 (𝑘 = 1 → 𝐷 = 𝐵)
prodfzo03.3 (𝑘 = 2 → 𝐷 = 𝐶)
prodfzo03.a ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
prodfzo03 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodfzo03
StepHypRef Expression
1 fzodisjsn 13495 . . . . 5 ((0..^2) ∩ {2}) = ∅
21a1i 11 . . . 4 (𝜑 → ((0..^2) ∩ {2}) = ∅)
3 2p1e3 12185 . . . . . . 7 (2 + 1) = 3
43oveq2i 7324 . . . . . 6 (0..^(2 + 1)) = (0..^3)
5 2eluzge0 12703 . . . . . . 7 2 ∈ (ℤ‘0)
6 fzosplitsn 13565 . . . . . . 7 (2 ∈ (ℤ‘0) → (0..^(2 + 1)) = ((0..^2) ∪ {2}))
75, 6ax-mp 5 . . . . . 6 (0..^(2 + 1)) = ((0..^2) ∪ {2})
84, 7eqtr3i 2767 . . . . 5 (0..^3) = ((0..^2) ∪ {2})
98a1i 11 . . . 4 (𝜑 → (0..^3) = ((0..^2) ∪ {2}))
10 fzofi 13764 . . . . 5 (0..^3) ∈ Fin
1110a1i 11 . . . 4 (𝜑 → (0..^3) ∈ Fin)
12 prodfzo03.a . . . 4 ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
132, 9, 11, 12fprodsplit 15745 . . 3 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷))
14 0ne1 12114 . . . . . 6 0 ≠ 1
15 disjsn2 4656 . . . . . 6 (0 ≠ 1 → ({0} ∩ {1}) = ∅)
1614, 15mp1i 13 . . . . 5 (𝜑 → ({0} ∩ {1}) = ∅)
17 fzo0to2pr 13542 . . . . . . 7 (0..^2) = {0, 1}
18 df-pr 4572 . . . . . . 7 {0, 1} = ({0} ∪ {1})
1917, 18eqtri 2765 . . . . . 6 (0..^2) = ({0} ∪ {1})
2019a1i 11 . . . . 5 (𝜑 → (0..^2) = ({0} ∪ {1}))
21 fzofi 13764 . . . . . 6 (0..^2) ∈ Fin
2221a1i 11 . . . . 5 (𝜑 → (0..^2) ∈ Fin)
23 2z 12422 . . . . . . . . 9 2 ∈ ℤ
24 3z 12423 . . . . . . . . 9 3 ∈ ℤ
25 2re 12117 . . . . . . . . . 10 2 ∈ ℝ
26 3re 12123 . . . . . . . . . 10 3 ∈ ℝ
27 2lt3 12215 . . . . . . . . . 10 2 < 3
2825, 26, 27ltleii 11168 . . . . . . . . 9 2 ≤ 3
29 eluz2 12658 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
3023, 24, 28, 29mpbir3an 1340 . . . . . . . 8 3 ∈ (ℤ‘2)
31 fzoss2 13485 . . . . . . . 8 (3 ∈ (ℤ‘2) → (0..^2) ⊆ (0..^3))
3230, 31ax-mp 5 . . . . . . 7 (0..^2) ⊆ (0..^3)
3332sseli 3926 . . . . . 6 (𝑘 ∈ (0..^2) → 𝑘 ∈ (0..^3))
3433, 12sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ)
3516, 20, 22, 34fprodsplit 15745 . . . 4 (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷))
3635oveq1d 7328 . . 3 (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
3713, 36eqtrd 2777 . 2 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
38 snfi 8884 . . . . 5 {0} ∈ Fin
3938a1i 11 . . . 4 (𝜑 → {0} ∈ Fin)
40 velsn 4585 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
41 prodfzo03.1 . . . . . . 7 (𝑘 = 0 → 𝐷 = 𝐴)
4241adantl 482 . . . . . 6 ((𝜑𝑘 = 0) → 𝐷 = 𝐴)
43 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴)
4412adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ)
4543, 44eqeltrrd 2839 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ)
46 c0ex 11039 . . . . . . . . . . . 12 0 ∈ V
4746tpid1 4712 . . . . . . . . . . 11 0 ∈ {0, 1, 2}
48 fzo0to3tp 13543 . . . . . . . . . . 11 (0..^3) = {0, 1, 2}
4947, 48eleqtrri 2837 . . . . . . . . . 10 0 ∈ (0..^3)
50 eqid 2737 . . . . . . . . . 10 𝐴 = 𝐴
5141eqeq1d 2739 . . . . . . . . . . 11 (𝑘 = 0 → (𝐷 = 𝐴𝐴 = 𝐴))
5251rspcev 3570 . . . . . . . . . 10 ((0 ∈ (0..^3) ∧ 𝐴 = 𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5349, 50, 52mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐴
5453a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5545, 54r19.29a 3156 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5655adantr 481 . . . . . 6 ((𝜑𝑘 = 0) → 𝐴 ∈ ℂ)
5742, 56eqeltrd 2838 . . . . 5 ((𝜑𝑘 = 0) → 𝐷 ∈ ℂ)
5840, 57sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝐷 ∈ ℂ)
5939, 58fprodcl 15731 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ)
60 snfi 8884 . . . . 5 {1} ∈ Fin
6160a1i 11 . . . 4 (𝜑 → {1} ∈ Fin)
62 velsn 4585 . . . . 5 (𝑘 ∈ {1} ↔ 𝑘 = 1)
63 prodfzo03.2 . . . . . . 7 (𝑘 = 1 → 𝐷 = 𝐵)
6463adantl 482 . . . . . 6 ((𝜑𝑘 = 1) → 𝐷 = 𝐵)
65 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
6612adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ)
6765, 66eqeltrrd 2839 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ)
68 1ex 11041 . . . . . . . . . . . 12 1 ∈ V
6968tpid2 4714 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7069, 48eleqtrri 2837 . . . . . . . . . 10 1 ∈ (0..^3)
71 eqid 2737 . . . . . . . . . 10 𝐵 = 𝐵
7263eqeq1d 2739 . . . . . . . . . . 11 (𝑘 = 1 → (𝐷 = 𝐵𝐵 = 𝐵))
7372rspcev 3570 . . . . . . . . . 10 ((1 ∈ (0..^3) ∧ 𝐵 = 𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7470, 71, 73mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐵
7574a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7667, 75r19.29a 3156 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
7776adantr 481 . . . . . 6 ((𝜑𝑘 = 1) → 𝐵 ∈ ℂ)
7864, 77eqeltrd 2838 . . . . 5 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
7962, 78sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {1}) → 𝐷 ∈ ℂ)
8061, 79fprodcl 15731 . . 3 (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ)
81 snfi 8884 . . . . 5 {2} ∈ Fin
8281a1i 11 . . . 4 (𝜑 → {2} ∈ Fin)
83 velsn 4585 . . . . 5 (𝑘 ∈ {2} ↔ 𝑘 = 2)
84 prodfzo03.3 . . . . . . 7 (𝑘 = 2 → 𝐷 = 𝐶)
8584adantl 482 . . . . . 6 ((𝜑𝑘 = 2) → 𝐷 = 𝐶)
86 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶)
8712adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ)
8886, 87eqeltrrd 2839 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ)
89 2ex 12120 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4717 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 48eleqtrri 2837 . . . . . . . . . 10 2 ∈ (0..^3)
92 eqid 2737 . . . . . . . . . 10 𝐶 = 𝐶
9384eqeq1d 2739 . . . . . . . . . . 11 (𝑘 = 2 → (𝐷 = 𝐶𝐶 = 𝐶))
9493rspcev 3570 . . . . . . . . . 10 ((2 ∈ (0..^3) ∧ 𝐶 = 𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9591, 92, 94mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐶
9695a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9788, 96r19.29a 3156 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9897adantr 481 . . . . . 6 ((𝜑𝑘 = 2) → 𝐶 ∈ ℂ)
9985, 98eqeltrd 2838 . . . . 5 ((𝜑𝑘 = 2) → 𝐷 ∈ ℂ)
10083, 99sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {2}) → 𝐷 ∈ ℂ)
10182, 100fprodcl 15731 . . 3 (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ)
10259, 80, 101mulassd 11068 . 2 (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)))
103 0nn0 12318 . . . . 5 0 ∈ ℕ0
104103a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
10541prodsn 15741 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴)
106104, 55, 105syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴)
107 1nn0 12319 . . . . . 6 1 ∈ ℕ0
108107a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10963prodsn 15741 . . . . 5 ((1 ∈ ℕ0𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵)
110108, 76, 109syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵)
111 2nn0 12320 . . . . . 6 2 ∈ ℕ0
112111a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
11384prodsn 15741 . . . . 5 ((2 ∈ ℕ0𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶)
114112, 97, 113syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶)
115110, 114oveq12d 7331 . . 3 (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶))
116106, 115oveq12d 7331 . 2 (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶)))
11737, 102, 1163eqtrd 2781 1 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  wrex 3071  cun 3894  cin 3895  wss 3896  c0 4266  {csn 4569  {cpr 4571  {ctp 4573   class class class wbr 5085  cfv 6463  (class class class)co 7313  Fincfn 8779  cc 10939  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946  cle 11080  2c2 12098  3c3 12099  0cn0 12303  cz 12389  cuz 12652  ..^cfzo 13452  cprod 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-inf2 9467  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-sup 9269  df-oi 9337  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-rp 12801  df-fz 13310  df-fzo 13453  df-seq 13792  df-exp 13853  df-hash 14115  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-clim 15266  df-prod 15685
This theorem is referenced by:  circlevma  32728  circlemethhgt  32729
  Copyright terms: Public domain W3C validator