Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfzo03 Structured version   Visualization version   GIF version

Theorem prodfzo03 31003
Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
prodfzo03.1 (𝑘 = 0 → 𝐷 = 𝐴)
prodfzo03.2 (𝑘 = 1 → 𝐷 = 𝐵)
prodfzo03.3 (𝑘 = 2 → 𝐷 = 𝐶)
prodfzo03.a ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
prodfzo03 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodfzo03
StepHypRef Expression
1 fzodisjsn 12726 . . . . 5 ((0..^2) ∩ {2}) = ∅
21a1i 11 . . . 4 (𝜑 → ((0..^2) ∩ {2}) = ∅)
3 2p1e3 11430 . . . . . . 7 (2 + 1) = 3
43oveq2i 6882 . . . . . 6 (0..^(2 + 1)) = (0..^3)
5 2eluzge0 11947 . . . . . . 7 2 ∈ (ℤ‘0)
6 fzosplitsn 12796 . . . . . . 7 (2 ∈ (ℤ‘0) → (0..^(2 + 1)) = ((0..^2) ∪ {2}))
75, 6ax-mp 5 . . . . . 6 (0..^(2 + 1)) = ((0..^2) ∪ {2})
84, 7eqtr3i 2829 . . . . 5 (0..^3) = ((0..^2) ∪ {2})
98a1i 11 . . . 4 (𝜑 → (0..^3) = ((0..^2) ∪ {2}))
10 fzofi 12993 . . . . 5 (0..^3) ∈ Fin
1110a1i 11 . . . 4 (𝜑 → (0..^3) ∈ Fin)
12 prodfzo03.a . . . 4 ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
132, 9, 11, 12fprodsplit 14913 . . 3 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷))
14 0ne1 11368 . . . . . 6 0 ≠ 1
15 disjsn2 4436 . . . . . 6 (0 ≠ 1 → ({0} ∩ {1}) = ∅)
1614, 15mp1i 13 . . . . 5 (𝜑 → ({0} ∩ {1}) = ∅)
17 fzo0to2pr 12773 . . . . . . 7 (0..^2) = {0, 1}
18 df-pr 4370 . . . . . . 7 {0, 1} = ({0} ∪ {1})
1917, 18eqtri 2827 . . . . . 6 (0..^2) = ({0} ∪ {1})
2019a1i 11 . . . . 5 (𝜑 → (0..^2) = ({0} ∪ {1}))
21 fzofi 12993 . . . . . 6 (0..^2) ∈ Fin
2221a1i 11 . . . . 5 (𝜑 → (0..^2) ∈ Fin)
23 2z 11671 . . . . . . . . 9 2 ∈ ℤ
24 3z 11672 . . . . . . . . 9 3 ∈ ℤ
25 2re 11370 . . . . . . . . . 10 2 ∈ ℝ
26 3re 11374 . . . . . . . . . 10 3 ∈ ℝ
27 2lt3 11467 . . . . . . . . . 10 2 < 3
2825, 26, 27ltleii 10442 . . . . . . . . 9 2 ≤ 3
29 eluz2 11906 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
3023, 24, 28, 29mpbir3an 1434 . . . . . . . 8 3 ∈ (ℤ‘2)
31 fzoss2 12716 . . . . . . . 8 (3 ∈ (ℤ‘2) → (0..^2) ⊆ (0..^3))
3230, 31ax-mp 5 . . . . . . 7 (0..^2) ⊆ (0..^3)
3332sseli 3791 . . . . . 6 (𝑘 ∈ (0..^2) → 𝑘 ∈ (0..^3))
3433, 12sylan2 582 . . . . 5 ((𝜑𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ)
3516, 20, 22, 34fprodsplit 14913 . . . 4 (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷))
3635oveq1d 6886 . . 3 (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
3713, 36eqtrd 2839 . 2 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
38 snfi 8274 . . . . 5 {0} ∈ Fin
3938a1i 11 . . . 4 (𝜑 → {0} ∈ Fin)
40 velsn 4383 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
41 prodfzo03.1 . . . . . . 7 (𝑘 = 0 → 𝐷 = 𝐴)
4241adantl 469 . . . . . 6 ((𝜑𝑘 = 0) → 𝐷 = 𝐴)
43 simpr 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴)
4412adantr 468 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ)
4543, 44eqeltrrd 2885 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ)
46 c0ex 10316 . . . . . . . . . . . 12 0 ∈ V
4746tpid1 4491 . . . . . . . . . . 11 0 ∈ {0, 1, 2}
48 fzo0to3tp 12774 . . . . . . . . . . 11 (0..^3) = {0, 1, 2}
4947, 48eleqtrri 2883 . . . . . . . . . 10 0 ∈ (0..^3)
50 eqid 2805 . . . . . . . . . 10 𝐴 = 𝐴
5141eqeq1d 2807 . . . . . . . . . . 11 (𝑘 = 0 → (𝐷 = 𝐴𝐴 = 𝐴))
5251rspcev 3501 . . . . . . . . . 10 ((0 ∈ (0..^3) ∧ 𝐴 = 𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5349, 50, 52mp2an 675 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐴
5453a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5545, 54r19.29a 3265 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5655adantr 468 . . . . . 6 ((𝜑𝑘 = 0) → 𝐴 ∈ ℂ)
5742, 56eqeltrd 2884 . . . . 5 ((𝜑𝑘 = 0) → 𝐷 ∈ ℂ)
5840, 57sylan2b 583 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝐷 ∈ ℂ)
5939, 58fprodcl 14899 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ)
60 snfi 8274 . . . . 5 {1} ∈ Fin
6160a1i 11 . . . 4 (𝜑 → {1} ∈ Fin)
62 velsn 4383 . . . . 5 (𝑘 ∈ {1} ↔ 𝑘 = 1)
63 prodfzo03.2 . . . . . . 7 (𝑘 = 1 → 𝐷 = 𝐵)
6463adantl 469 . . . . . 6 ((𝜑𝑘 = 1) → 𝐷 = 𝐵)
65 simpr 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
6612adantr 468 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ)
6765, 66eqeltrrd 2885 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ)
68 1ex 10318 . . . . . . . . . . . 12 1 ∈ V
6968tpid2 4492 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7069, 48eleqtrri 2883 . . . . . . . . . 10 1 ∈ (0..^3)
71 eqid 2805 . . . . . . . . . 10 𝐵 = 𝐵
7263eqeq1d 2807 . . . . . . . . . . 11 (𝑘 = 1 → (𝐷 = 𝐵𝐵 = 𝐵))
7372rspcev 3501 . . . . . . . . . 10 ((1 ∈ (0..^3) ∧ 𝐵 = 𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7470, 71, 73mp2an 675 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐵
7574a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7667, 75r19.29a 3265 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
7776adantr 468 . . . . . 6 ((𝜑𝑘 = 1) → 𝐵 ∈ ℂ)
7864, 77eqeltrd 2884 . . . . 5 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
7962, 78sylan2b 583 . . . 4 ((𝜑𝑘 ∈ {1}) → 𝐷 ∈ ℂ)
8061, 79fprodcl 14899 . . 3 (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ)
81 snfi 8274 . . . . 5 {2} ∈ Fin
8281a1i 11 . . . 4 (𝜑 → {2} ∈ Fin)
83 velsn 4383 . . . . 5 (𝑘 ∈ {2} ↔ 𝑘 = 2)
84 prodfzo03.3 . . . . . . 7 (𝑘 = 2 → 𝐷 = 𝐶)
8584adantl 469 . . . . . 6 ((𝜑𝑘 = 2) → 𝐷 = 𝐶)
86 simpr 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶)
8712adantr 468 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ)
8886, 87eqeltrrd 2885 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ)
89 2ex 11372 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4494 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 48eleqtrri 2883 . . . . . . . . . 10 2 ∈ (0..^3)
92 eqid 2805 . . . . . . . . . 10 𝐶 = 𝐶
9384eqeq1d 2807 . . . . . . . . . . 11 (𝑘 = 2 → (𝐷 = 𝐶𝐶 = 𝐶))
9493rspcev 3501 . . . . . . . . . 10 ((2 ∈ (0..^3) ∧ 𝐶 = 𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9591, 92, 94mp2an 675 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐶
9695a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9788, 96r19.29a 3265 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9897adantr 468 . . . . . 6 ((𝜑𝑘 = 2) → 𝐶 ∈ ℂ)
9985, 98eqeltrd 2884 . . . . 5 ((𝜑𝑘 = 2) → 𝐷 ∈ ℂ)
10083, 99sylan2b 583 . . . 4 ((𝜑𝑘 ∈ {2}) → 𝐷 ∈ ℂ)
10182, 100fprodcl 14899 . . 3 (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ)
10259, 80, 101mulassd 10345 . 2 (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)))
103 0nn0 11570 . . . . 5 0 ∈ ℕ0
104103a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
10541prodsn 14909 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴)
106104, 55, 105syl2anc 575 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴)
107 1nn0 11571 . . . . . 6 1 ∈ ℕ0
108107a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10963prodsn 14909 . . . . 5 ((1 ∈ ℕ0𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵)
110108, 76, 109syl2anc 575 . . . 4 (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵)
111 2nn0 11572 . . . . . 6 2 ∈ ℕ0
112111a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
11384prodsn 14909 . . . . 5 ((2 ∈ ℕ0𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶)
114112, 97, 113syl2anc 575 . . . 4 (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶)
115110, 114oveq12d 6889 . . 3 (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶))
116106, 115oveq12d 6889 . 2 (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶)))
11737, 102, 1163eqtrd 2843 1 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2158  wne 2977  wrex 3096  cun 3764  cin 3765  wss 3766  c0 4113  {csn 4367  {cpr 4369  {ctp 4371   class class class wbr 4840  cfv 6098  (class class class)co 6871  Fincfn 8189  cc 10216  0cc0 10218  1c1 10219   + caddc 10221   · cmul 10223  cle 10357  2c2 11352  3c3 11353  0cn0 11555  cz 11639  cuz 11900  ..^cfzo 12685  cprod 14852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295  ax-pre-sup 10296
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-er 7976  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-sup 8584  df-oi 8651  df-card 9045  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-div 10967  df-nn 11303  df-2 11360  df-3 11361  df-n0 11556  df-z 11640  df-uz 11901  df-rp 12043  df-fz 12546  df-fzo 12686  df-seq 13021  df-exp 13080  df-hash 13334  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-prod 14853
This theorem is referenced by:  circlevma  31042  circlemethhgt  31043
  Copyright terms: Public domain W3C validator