Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfzo03 Structured version   Visualization version   GIF version

Theorem prodfzo03 32583
Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
prodfzo03.1 (𝑘 = 0 → 𝐷 = 𝐴)
prodfzo03.2 (𝑘 = 1 → 𝐷 = 𝐵)
prodfzo03.3 (𝑘 = 2 → 𝐷 = 𝐶)
prodfzo03.a ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
prodfzo03 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodfzo03
StepHypRef Expression
1 fzodisjsn 13425 . . . . 5 ((0..^2) ∩ {2}) = ∅
21a1i 11 . . . 4 (𝜑 → ((0..^2) ∩ {2}) = ∅)
3 2p1e3 12115 . . . . . . 7 (2 + 1) = 3
43oveq2i 7286 . . . . . 6 (0..^(2 + 1)) = (0..^3)
5 2eluzge0 12633 . . . . . . 7 2 ∈ (ℤ‘0)
6 fzosplitsn 13495 . . . . . . 7 (2 ∈ (ℤ‘0) → (0..^(2 + 1)) = ((0..^2) ∪ {2}))
75, 6ax-mp 5 . . . . . 6 (0..^(2 + 1)) = ((0..^2) ∪ {2})
84, 7eqtr3i 2768 . . . . 5 (0..^3) = ((0..^2) ∪ {2})
98a1i 11 . . . 4 (𝜑 → (0..^3) = ((0..^2) ∪ {2}))
10 fzofi 13694 . . . . 5 (0..^3) ∈ Fin
1110a1i 11 . . . 4 (𝜑 → (0..^3) ∈ Fin)
12 prodfzo03.a . . . 4 ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
132, 9, 11, 12fprodsplit 15676 . . 3 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷))
14 0ne1 12044 . . . . . 6 0 ≠ 1
15 disjsn2 4648 . . . . . 6 (0 ≠ 1 → ({0} ∩ {1}) = ∅)
1614, 15mp1i 13 . . . . 5 (𝜑 → ({0} ∩ {1}) = ∅)
17 fzo0to2pr 13472 . . . . . . 7 (0..^2) = {0, 1}
18 df-pr 4564 . . . . . . 7 {0, 1} = ({0} ∪ {1})
1917, 18eqtri 2766 . . . . . 6 (0..^2) = ({0} ∪ {1})
2019a1i 11 . . . . 5 (𝜑 → (0..^2) = ({0} ∪ {1}))
21 fzofi 13694 . . . . . 6 (0..^2) ∈ Fin
2221a1i 11 . . . . 5 (𝜑 → (0..^2) ∈ Fin)
23 2z 12352 . . . . . . . . 9 2 ∈ ℤ
24 3z 12353 . . . . . . . . 9 3 ∈ ℤ
25 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
26 3re 12053 . . . . . . . . . 10 3 ∈ ℝ
27 2lt3 12145 . . . . . . . . . 10 2 < 3
2825, 26, 27ltleii 11098 . . . . . . . . 9 2 ≤ 3
29 eluz2 12588 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
3023, 24, 28, 29mpbir3an 1340 . . . . . . . 8 3 ∈ (ℤ‘2)
31 fzoss2 13415 . . . . . . . 8 (3 ∈ (ℤ‘2) → (0..^2) ⊆ (0..^3))
3230, 31ax-mp 5 . . . . . . 7 (0..^2) ⊆ (0..^3)
3332sseli 3917 . . . . . 6 (𝑘 ∈ (0..^2) → 𝑘 ∈ (0..^3))
3433, 12sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ)
3516, 20, 22, 34fprodsplit 15676 . . . 4 (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷))
3635oveq1d 7290 . . 3 (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
3713, 36eqtrd 2778 . 2 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
38 snfi 8834 . . . . 5 {0} ∈ Fin
3938a1i 11 . . . 4 (𝜑 → {0} ∈ Fin)
40 velsn 4577 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
41 prodfzo03.1 . . . . . . 7 (𝑘 = 0 → 𝐷 = 𝐴)
4241adantl 482 . . . . . 6 ((𝜑𝑘 = 0) → 𝐷 = 𝐴)
43 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴)
4412adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ)
4543, 44eqeltrrd 2840 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ)
46 c0ex 10969 . . . . . . . . . . . 12 0 ∈ V
4746tpid1 4704 . . . . . . . . . . 11 0 ∈ {0, 1, 2}
48 fzo0to3tp 13473 . . . . . . . . . . 11 (0..^3) = {0, 1, 2}
4947, 48eleqtrri 2838 . . . . . . . . . 10 0 ∈ (0..^3)
50 eqid 2738 . . . . . . . . . 10 𝐴 = 𝐴
5141eqeq1d 2740 . . . . . . . . . . 11 (𝑘 = 0 → (𝐷 = 𝐴𝐴 = 𝐴))
5251rspcev 3561 . . . . . . . . . 10 ((0 ∈ (0..^3) ∧ 𝐴 = 𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5349, 50, 52mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐴
5453a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5545, 54r19.29a 3218 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5655adantr 481 . . . . . 6 ((𝜑𝑘 = 0) → 𝐴 ∈ ℂ)
5742, 56eqeltrd 2839 . . . . 5 ((𝜑𝑘 = 0) → 𝐷 ∈ ℂ)
5840, 57sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝐷 ∈ ℂ)
5939, 58fprodcl 15662 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ)
60 snfi 8834 . . . . 5 {1} ∈ Fin
6160a1i 11 . . . 4 (𝜑 → {1} ∈ Fin)
62 velsn 4577 . . . . 5 (𝑘 ∈ {1} ↔ 𝑘 = 1)
63 prodfzo03.2 . . . . . . 7 (𝑘 = 1 → 𝐷 = 𝐵)
6463adantl 482 . . . . . 6 ((𝜑𝑘 = 1) → 𝐷 = 𝐵)
65 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
6612adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ)
6765, 66eqeltrrd 2840 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ)
68 1ex 10971 . . . . . . . . . . . 12 1 ∈ V
6968tpid2 4706 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7069, 48eleqtrri 2838 . . . . . . . . . 10 1 ∈ (0..^3)
71 eqid 2738 . . . . . . . . . 10 𝐵 = 𝐵
7263eqeq1d 2740 . . . . . . . . . . 11 (𝑘 = 1 → (𝐷 = 𝐵𝐵 = 𝐵))
7372rspcev 3561 . . . . . . . . . 10 ((1 ∈ (0..^3) ∧ 𝐵 = 𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7470, 71, 73mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐵
7574a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7667, 75r19.29a 3218 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
7776adantr 481 . . . . . 6 ((𝜑𝑘 = 1) → 𝐵 ∈ ℂ)
7864, 77eqeltrd 2839 . . . . 5 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
7962, 78sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {1}) → 𝐷 ∈ ℂ)
8061, 79fprodcl 15662 . . 3 (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ)
81 snfi 8834 . . . . 5 {2} ∈ Fin
8281a1i 11 . . . 4 (𝜑 → {2} ∈ Fin)
83 velsn 4577 . . . . 5 (𝑘 ∈ {2} ↔ 𝑘 = 2)
84 prodfzo03.3 . . . . . . 7 (𝑘 = 2 → 𝐷 = 𝐶)
8584adantl 482 . . . . . 6 ((𝜑𝑘 = 2) → 𝐷 = 𝐶)
86 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶)
8712adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ)
8886, 87eqeltrrd 2840 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ)
89 2ex 12050 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4709 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 48eleqtrri 2838 . . . . . . . . . 10 2 ∈ (0..^3)
92 eqid 2738 . . . . . . . . . 10 𝐶 = 𝐶
9384eqeq1d 2740 . . . . . . . . . . 11 (𝑘 = 2 → (𝐷 = 𝐶𝐶 = 𝐶))
9493rspcev 3561 . . . . . . . . . 10 ((2 ∈ (0..^3) ∧ 𝐶 = 𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9591, 92, 94mp2an 689 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐶
9695a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9788, 96r19.29a 3218 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9897adantr 481 . . . . . 6 ((𝜑𝑘 = 2) → 𝐶 ∈ ℂ)
9985, 98eqeltrd 2839 . . . . 5 ((𝜑𝑘 = 2) → 𝐷 ∈ ℂ)
10083, 99sylan2b 594 . . . 4 ((𝜑𝑘 ∈ {2}) → 𝐷 ∈ ℂ)
10182, 100fprodcl 15662 . . 3 (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ)
10259, 80, 101mulassd 10998 . 2 (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)))
103 0nn0 12248 . . . . 5 0 ∈ ℕ0
104103a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
10541prodsn 15672 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴)
106104, 55, 105syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴)
107 1nn0 12249 . . . . . 6 1 ∈ ℕ0
108107a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10963prodsn 15672 . . . . 5 ((1 ∈ ℕ0𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵)
110108, 76, 109syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵)
111 2nn0 12250 . . . . . 6 2 ∈ ℕ0
112111a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
11384prodsn 15672 . . . . 5 ((2 ∈ ℕ0𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶)
114112, 97, 113syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶)
115110, 114oveq12d 7293 . . 3 (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶))
116106, 115oveq12d 7293 . 2 (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶)))
11737, 102, 1163eqtrd 2782 1 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  {ctp 4565   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  2c2 12028  3c3 12029  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616
This theorem is referenced by:  circlevma  32622  circlemethhgt  32623
  Copyright terms: Public domain W3C validator