Proof of Theorem prodfzo03
| Step | Hyp | Ref
| Expression |
| 1 | | fzodisjsn 13737 |
. . . . 5
⊢ ((0..^2)
∩ {2}) = ∅ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → ((0..^2) ∩ {2}) =
∅) |
| 3 | | 2p1e3 12408 |
. . . . . . 7
⊢ (2 + 1) =
3 |
| 4 | 3 | oveq2i 7442 |
. . . . . 6
⊢ (0..^(2 +
1)) = (0..^3) |
| 5 | | 2eluzge0 12935 |
. . . . . . 7
⊢ 2 ∈
(ℤ≥‘0) |
| 6 | | fzosplitsn 13814 |
. . . . . . 7
⊢ (2 ∈
(ℤ≥‘0) → (0..^(2 + 1)) = ((0..^2) ∪
{2})) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . 6
⊢ (0..^(2 +
1)) = ((0..^2) ∪ {2}) |
| 8 | 4, 7 | eqtr3i 2767 |
. . . . 5
⊢ (0..^3) =
((0..^2) ∪ {2}) |
| 9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → (0..^3) = ((0..^2) ∪
{2})) |
| 10 | | fzofi 14015 |
. . . . 5
⊢ (0..^3)
∈ Fin |
| 11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → (0..^3) ∈
Fin) |
| 12 | | prodfzo03.a |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ) |
| 13 | 2, 9, 11, 12 | fprodsplit 16002 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷)) |
| 14 | | 0ne1 12337 |
. . . . . 6
⊢ 0 ≠
1 |
| 15 | | disjsn2 4712 |
. . . . . 6
⊢ (0 ≠ 1
→ ({0} ∩ {1}) = ∅) |
| 16 | 14, 15 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ({0} ∩ {1}) =
∅) |
| 17 | | fzo0to2pr 13789 |
. . . . . . 7
⊢ (0..^2) =
{0, 1} |
| 18 | | df-pr 4629 |
. . . . . . 7
⊢ {0, 1} =
({0} ∪ {1}) |
| 19 | 17, 18 | eqtri 2765 |
. . . . . 6
⊢ (0..^2) =
({0} ∪ {1}) |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^2) = ({0} ∪
{1})) |
| 21 | | fzofi 14015 |
. . . . . 6
⊢ (0..^2)
∈ Fin |
| 22 | 21 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^2) ∈
Fin) |
| 23 | | 2z 12649 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 24 | | 3z 12650 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
| 25 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 26 | | 3re 12346 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 27 | | 2lt3 12438 |
. . . . . . . . . 10
⊢ 2 <
3 |
| 28 | 25, 26, 27 | ltleii 11384 |
. . . . . . . . 9
⊢ 2 ≤
3 |
| 29 | | eluz2 12884 |
. . . . . . . . 9
⊢ (3 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 3 ∈
ℤ ∧ 2 ≤ 3)) |
| 30 | 23, 24, 28, 29 | mpbir3an 1342 |
. . . . . . . 8
⊢ 3 ∈
(ℤ≥‘2) |
| 31 | | fzoss2 13727 |
. . . . . . . 8
⊢ (3 ∈
(ℤ≥‘2) → (0..^2) ⊆
(0..^3)) |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . 7
⊢ (0..^2)
⊆ (0..^3) |
| 33 | 32 | sseli 3979 |
. . . . . 6
⊢ (𝑘 ∈ (0..^2) → 𝑘 ∈
(0..^3)) |
| 34 | 33, 12 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ) |
| 35 | 16, 20, 22, 34 | fprodsplit 16002 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷)) |
| 36 | 35 | oveq1d 7446 |
. . 3
⊢ (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷)) |
| 37 | 13, 36 | eqtrd 2777 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷)) |
| 38 | | snfi 9083 |
. . . . 5
⊢ {0}
∈ Fin |
| 39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → {0} ∈
Fin) |
| 40 | | velsn 4642 |
. . . . 5
⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) |
| 41 | | prodfzo03.1 |
. . . . . . 7
⊢ (𝑘 = 0 → 𝐷 = 𝐴) |
| 42 | 41 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐷 = 𝐴) |
| 43 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴) |
| 44 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ) |
| 45 | 43, 44 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ) |
| 46 | | c0ex 11255 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 47 | 46 | tpid1 4768 |
. . . . . . . . . . 11
⊢ 0 ∈
{0, 1, 2} |
| 48 | | fzo0to3tp 13791 |
. . . . . . . . . . 11
⊢ (0..^3) =
{0, 1, 2} |
| 49 | 47, 48 | eleqtrri 2840 |
. . . . . . . . . 10
⊢ 0 ∈
(0..^3) |
| 50 | | eqid 2737 |
. . . . . . . . . 10
⊢ 𝐴 = 𝐴 |
| 51 | 41 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (𝐷 = 𝐴 ↔ 𝐴 = 𝐴)) |
| 52 | 51 | rspcev 3622 |
. . . . . . . . . 10
⊢ ((0
∈ (0..^3) ∧ 𝐴 =
𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴) |
| 53 | 49, 50, 52 | mp2an 692 |
. . . . . . . . 9
⊢
∃𝑘 ∈
(0..^3)𝐷 = 𝐴 |
| 54 | 53 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴) |
| 55 | 45, 54 | r19.29a 3162 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐴 ∈ ℂ) |
| 57 | 42, 56 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 0) → 𝐷 ∈ ℂ) |
| 58 | 40, 57 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝐷 ∈ ℂ) |
| 59 | 39, 58 | fprodcl 15988 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ) |
| 60 | | snfi 9083 |
. . . . 5
⊢ {1}
∈ Fin |
| 61 | 60 | a1i 11 |
. . . 4
⊢ (𝜑 → {1} ∈
Fin) |
| 62 | | velsn 4642 |
. . . . 5
⊢ (𝑘 ∈ {1} ↔ 𝑘 = 1) |
| 63 | | prodfzo03.2 |
. . . . . . 7
⊢ (𝑘 = 1 → 𝐷 = 𝐵) |
| 64 | 63 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1) → 𝐷 = 𝐵) |
| 65 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵) |
| 66 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ) |
| 67 | 65, 66 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ) |
| 68 | | 1ex 11257 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
| 69 | 68 | tpid2 4770 |
. . . . . . . . . . 11
⊢ 1 ∈
{0, 1, 2} |
| 70 | 69, 48 | eleqtrri 2840 |
. . . . . . . . . 10
⊢ 1 ∈
(0..^3) |
| 71 | | eqid 2737 |
. . . . . . . . . 10
⊢ 𝐵 = 𝐵 |
| 72 | 63 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → (𝐷 = 𝐵 ↔ 𝐵 = 𝐵)) |
| 73 | 72 | rspcev 3622 |
. . . . . . . . . 10
⊢ ((1
∈ (0..^3) ∧ 𝐵 =
𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵) |
| 74 | 70, 71, 73 | mp2an 692 |
. . . . . . . . 9
⊢
∃𝑘 ∈
(0..^3)𝐷 = 𝐵 |
| 75 | 74 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵) |
| 76 | 67, 75 | r19.29a 3162 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 77 | 76 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 1) → 𝐵 ∈ ℂ) |
| 78 | 64, 77 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 1) → 𝐷 ∈ ℂ) |
| 79 | 62, 78 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {1}) → 𝐷 ∈ ℂ) |
| 80 | 61, 79 | fprodcl 15988 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ) |
| 81 | | snfi 9083 |
. . . . 5
⊢ {2}
∈ Fin |
| 82 | 81 | a1i 11 |
. . . 4
⊢ (𝜑 → {2} ∈
Fin) |
| 83 | | velsn 4642 |
. . . . 5
⊢ (𝑘 ∈ {2} ↔ 𝑘 = 2) |
| 84 | | prodfzo03.3 |
. . . . . . 7
⊢ (𝑘 = 2 → 𝐷 = 𝐶) |
| 85 | 84 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 2) → 𝐷 = 𝐶) |
| 86 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶) |
| 87 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ) |
| 88 | 86, 87 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ) |
| 89 | | 2ex 12343 |
. . . . . . . . . . . 12
⊢ 2 ∈
V |
| 90 | 89 | tpid3 4773 |
. . . . . . . . . . 11
⊢ 2 ∈
{0, 1, 2} |
| 91 | 90, 48 | eleqtrri 2840 |
. . . . . . . . . 10
⊢ 2 ∈
(0..^3) |
| 92 | | eqid 2737 |
. . . . . . . . . 10
⊢ 𝐶 = 𝐶 |
| 93 | 84 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → (𝐷 = 𝐶 ↔ 𝐶 = 𝐶)) |
| 94 | 93 | rspcev 3622 |
. . . . . . . . . 10
⊢ ((2
∈ (0..^3) ∧ 𝐶 =
𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶) |
| 95 | 91, 92, 94 | mp2an 692 |
. . . . . . . . 9
⊢
∃𝑘 ∈
(0..^3)𝐷 = 𝐶 |
| 96 | 95 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶) |
| 97 | 88, 96 | r19.29a 3162 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 98 | 97 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 2) → 𝐶 ∈ ℂ) |
| 99 | 85, 98 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = 2) → 𝐷 ∈ ℂ) |
| 100 | 83, 99 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {2}) → 𝐷 ∈ ℂ) |
| 101 | 82, 100 | fprodcl 15988 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ) |
| 102 | 59, 80, 101 | mulassd 11284 |
. 2
⊢ (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷))) |
| 103 | | 0nn0 12541 |
. . . . 5
⊢ 0 ∈
ℕ0 |
| 104 | 103 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 ∈
ℕ0) |
| 105 | 41 | prodsn 15998 |
. . . 4
⊢ ((0
∈ ℕ0 ∧ 𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴) |
| 106 | 104, 55, 105 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴) |
| 107 | | 1nn0 12542 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
| 108 | 107 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
| 109 | 63 | prodsn 15998 |
. . . . 5
⊢ ((1
∈ ℕ0 ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵) |
| 110 | 108, 76, 109 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵) |
| 111 | | 2nn0 12543 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
| 112 | 111 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℕ0) |
| 113 | 84 | prodsn 15998 |
. . . . 5
⊢ ((2
∈ ℕ0 ∧ 𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶) |
| 114 | 112, 97, 113 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶) |
| 115 | 110, 114 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶)) |
| 116 | 106, 115 | oveq12d 7449 |
. 2
⊢ (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶))) |
| 117 | 37, 102, 116 | 3eqtrd 2781 |
1
⊢ (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶))) |