Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlevma Structured version   Visualization version   GIF version

Theorem circlevma 31240
Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypothesis
Ref Expression
circlevma.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlevma (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlevma
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 circlevma.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 11392 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 vmaf 25197 . . . . . . 7 Λ:ℕ⟶ℝ
5 ax-resscn 10281 . . . . . . 7 ℝ ⊆ ℂ
6 fss 6269 . . . . . . 7 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
74, 5, 6mp2an 684 . . . . . 6 Λ:ℕ⟶ℂ
8 cnex 10305 . . . . . . 7 ℂ ∈ V
9 nnex 11319 . . . . . . 7 ℕ ∈ V
10 elmapg 8108 . . . . . . 7 ((ℂ ∈ V ∧ ℕ ∈ V) → (Λ ∈ (ℂ ↑𝑚 ℕ) ↔ Λ:ℕ⟶ℂ))
118, 9, 10mp2an 684 . . . . . 6 (Λ ∈ (ℂ ↑𝑚 ℕ) ↔ Λ:ℕ⟶ℂ)
127, 11mpbir 223 . . . . 5 Λ ∈ (ℂ ↑𝑚 ℕ)
1312fconst6 6310 . . . 4 ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑𝑚 ℕ)
1413a1i 11 . . 3 (𝜑 → ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑𝑚 ℕ))
151, 3, 14circlemeth 31238 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
16 c0ex 10322 . . . . . . . . 9 0 ∈ V
1716tpid1 4492 . . . . . . . 8 0 ∈ {0, 1, 2}
18 fzo0to3tp 12809 . . . . . . . 8 (0..^3) = {0, 1, 2}
1917, 18eleqtrri 2877 . . . . . . 7 0 ∈ (0..^3)
20 eleq1 2866 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^3) ↔ 0 ∈ (0..^3)))
2119, 20mpbiri 250 . . . . . 6 (𝑎 = 0 → 𝑎 ∈ (0..^3))
2212elexi 3401 . . . . . . 7 Λ ∈ V
2322fvconst2 6698 . . . . . 6 (𝑎 ∈ (0..^3) → (((0..^3) × {Λ})‘𝑎) = Λ)
2421, 23syl 17 . . . . 5 (𝑎 = 0 → (((0..^3) × {Λ})‘𝑎) = Λ)
25 fveq2 6411 . . . . 5 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
2624, 25fveq12d 6418 . . . 4 (𝑎 = 0 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘0)))
27 1ex 10324 . . . . . . . . 9 1 ∈ V
2827tpid2 4493 . . . . . . . 8 1 ∈ {0, 1, 2}
2928, 18eleqtrri 2877 . . . . . . 7 1 ∈ (0..^3)
30 eleq1 2866 . . . . . . 7 (𝑎 = 1 → (𝑎 ∈ (0..^3) ↔ 1 ∈ (0..^3)))
3129, 30mpbiri 250 . . . . . 6 (𝑎 = 1 → 𝑎 ∈ (0..^3))
3231, 23syl 17 . . . . 5 (𝑎 = 1 → (((0..^3) × {Λ})‘𝑎) = Λ)
33 fveq2 6411 . . . . 5 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3432, 33fveq12d 6418 . . . 4 (𝑎 = 1 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘1)))
35 2ex 11390 . . . . . . . . 9 2 ∈ V
3635tpid3 4495 . . . . . . . 8 2 ∈ {0, 1, 2}
3736, 18eleqtrri 2877 . . . . . . 7 2 ∈ (0..^3)
38 eleq1 2866 . . . . . . 7 (𝑎 = 2 → (𝑎 ∈ (0..^3) ↔ 2 ∈ (0..^3)))
3937, 38mpbiri 250 . . . . . 6 (𝑎 = 2 → 𝑎 ∈ (0..^3))
4039, 23syl 17 . . . . 5 (𝑎 = 2 → (((0..^3) × {Λ})‘𝑎) = Λ)
41 fveq2 6411 . . . . 5 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
4240, 41fveq12d 6418 . . . 4 (𝑎 = 2 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘2)))
4323fveq1d 6413 . . . . . 6 (𝑎 ∈ (0..^3) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
4443adantl 474 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
457a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → Λ:ℕ⟶ℂ)
46 ssidd 3820 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
471nn0zd 11770 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4847adantr 473 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
492nnnn0i 11589 . . . . . . . . 9 3 ∈ ℕ0
5049a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
51 simpr 478 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
5246, 48, 50, 51reprf 31210 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
5352ffvelrnda 6585 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
5445, 53ffvelrnd 6586 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (Λ‘(𝑛𝑎)) ∈ ℂ)
5544, 54eqeltrd 2878 . . . 4 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5626, 34, 42, 55prodfzo03 31201 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5756sumeq2dv 14774 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5823adantl 474 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((0..^3) × {Λ})‘𝑎) = Λ)
5958oveq1d 6893 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)vts𝑁) = (Λvts𝑁))
6059fveq1d 6413 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ((Λvts𝑁)‘𝑥))
6160prodeq2dv 14990 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥))
62 fzofi 13028 . . . . . . 7 (0..^3) ∈ Fin
6362a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (0..^3) ∈ Fin)
641adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
65 ioossre 12484 . . . . . . . . . 10 (0(,)1) ⊆ ℝ
6665, 5sstri 3807 . . . . . . . . 9 (0(,)1) ⊆ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → (0(,)1) ⊆ ℂ)
6867sselda 3798 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
697a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → Λ:ℕ⟶ℂ)
7064, 68, 69vtscl 31236 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((Λvts𝑁)‘𝑥) ∈ ℂ)
71 fprodconst 15045 . . . . . 6 (((0..^3) ∈ Fin ∧ ((Λvts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
7263, 70, 71syl2anc 580 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
73 hashfzo0 13466 . . . . . . . 8 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
7449, 73ax-mp 5 . . . . . . 7 (♯‘(0..^3)) = 3
7574a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(0..^3)) = 3)
7675oveq2d 6894 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))) = (((Λvts𝑁)‘𝑥)↑3))
7761, 72, 763eqtrd 2837 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑3))
7877oveq1d 6893 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7978itgeq2dv 23889 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
8015, 57, 793eqtr3d 2841 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  wss 3769  {csn 4368  {ctp 4372   × cxp 5310  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  Fincfn 8195  cc 10222  cr 10223  0cc0 10224  1c1 10225  ici 10226   · cmul 10229  -cneg 10557  cn 11312  2c2 11368  3c3 11369  0cn0 11580  cz 11666  (,)cioo 12424  ..^cfzo 12720  cexp 13114  chash 13370  Σcsu 14757  cprod 14972  expce 15128  πcpi 15133  citg 23726  Λcvma 25170  reprcrepr 31206  vtscvts 31233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-symdif 4041  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-disj 4812  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-ofr 7132  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ioc 12429  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-prod 14973  df-ef 15134  df-sin 15136  df-cos 15137  df-pi 15139  df-dvds 15320  df-gcd 15552  df-prm 15720  df-pc 15875  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-cmp 21519  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-ovol 23572  df-vol 23573  df-mbf 23727  df-itg1 23728  df-itg2 23729  df-ibl 23730  df-itg 23731  df-0p 23778  df-limc 23971  df-dv 23972  df-log 24644  df-vma 25176  df-repr 31207  df-vts 31234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator