Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlevma Structured version   Visualization version   GIF version

Theorem circlevma 34640
Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypothesis
Ref Expression
circlevma.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlevma (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlevma
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 circlevma.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12272 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 vmaf 27036 . . . . . . 7 Λ:ℕ⟶ℝ
5 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
6 fss 6707 . . . . . . 7 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
74, 5, 6mp2an 692 . . . . . 6 Λ:ℕ⟶ℂ
8 cnex 11156 . . . . . . 7 ℂ ∈ V
9 nnex 12199 . . . . . . 7 ℕ ∈ V
10 elmapg 8815 . . . . . . 7 ((ℂ ∈ V ∧ ℕ ∈ V) → (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ))
118, 9, 10mp2an 692 . . . . . 6 (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ)
127, 11mpbir 231 . . . . 5 Λ ∈ (ℂ ↑m ℕ)
1312fconst6 6753 . . . 4 ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ)
1413a1i 11 . . 3 (𝜑 → ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ))
151, 3, 14circlemeth 34638 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
16 c0ex 11175 . . . . . . . . 9 0 ∈ V
1716tpid1 4735 . . . . . . . 8 0 ∈ {0, 1, 2}
18 fzo0to3tp 13720 . . . . . . . 8 (0..^3) = {0, 1, 2}
1917, 18eleqtrri 2828 . . . . . . 7 0 ∈ (0..^3)
20 eleq1 2817 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^3) ↔ 0 ∈ (0..^3)))
2119, 20mpbiri 258 . . . . . 6 (𝑎 = 0 → 𝑎 ∈ (0..^3))
2212elexi 3473 . . . . . . 7 Λ ∈ V
2322fvconst2 7181 . . . . . 6 (𝑎 ∈ (0..^3) → (((0..^3) × {Λ})‘𝑎) = Λ)
2421, 23syl 17 . . . . 5 (𝑎 = 0 → (((0..^3) × {Λ})‘𝑎) = Λ)
25 fveq2 6861 . . . . 5 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
2624, 25fveq12d 6868 . . . 4 (𝑎 = 0 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘0)))
27 1ex 11177 . . . . . . . . 9 1 ∈ V
2827tpid2 4737 . . . . . . . 8 1 ∈ {0, 1, 2}
2928, 18eleqtrri 2828 . . . . . . 7 1 ∈ (0..^3)
30 eleq1 2817 . . . . . . 7 (𝑎 = 1 → (𝑎 ∈ (0..^3) ↔ 1 ∈ (0..^3)))
3129, 30mpbiri 258 . . . . . 6 (𝑎 = 1 → 𝑎 ∈ (0..^3))
3231, 23syl 17 . . . . 5 (𝑎 = 1 → (((0..^3) × {Λ})‘𝑎) = Λ)
33 fveq2 6861 . . . . 5 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3432, 33fveq12d 6868 . . . 4 (𝑎 = 1 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘1)))
35 2ex 12270 . . . . . . . . 9 2 ∈ V
3635tpid3 4740 . . . . . . . 8 2 ∈ {0, 1, 2}
3736, 18eleqtrri 2828 . . . . . . 7 2 ∈ (0..^3)
38 eleq1 2817 . . . . . . 7 (𝑎 = 2 → (𝑎 ∈ (0..^3) ↔ 2 ∈ (0..^3)))
3937, 38mpbiri 258 . . . . . 6 (𝑎 = 2 → 𝑎 ∈ (0..^3))
4039, 23syl 17 . . . . 5 (𝑎 = 2 → (((0..^3) × {Λ})‘𝑎) = Λ)
41 fveq2 6861 . . . . 5 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
4240, 41fveq12d 6868 . . . 4 (𝑎 = 2 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘2)))
4323fveq1d 6863 . . . . . 6 (𝑎 ∈ (0..^3) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
4443adantl 481 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
457a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → Λ:ℕ⟶ℂ)
46 ssidd 3973 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
471nn0zd 12562 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4847adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
492nnnn0i 12457 . . . . . . . . 9 3 ∈ ℕ0
5049a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
51 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
5246, 48, 50, 51reprf 34610 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
5352ffvelcdmda 7059 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
5445, 53ffvelcdmd 7060 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (Λ‘(𝑛𝑎)) ∈ ℂ)
5544, 54eqeltrd 2829 . . . 4 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5626, 34, 42, 55prodfzo03 34601 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5756sumeq2dv 15675 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5823adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((0..^3) × {Λ})‘𝑎) = Λ)
5958oveq1d 7405 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)vts𝑁) = (Λvts𝑁))
6059fveq1d 6863 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ((Λvts𝑁)‘𝑥))
6160prodeq2dv 15895 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥))
62 fzofi 13946 . . . . . . 7 (0..^3) ∈ Fin
6362a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (0..^3) ∈ Fin)
641adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
65 ioossre 13375 . . . . . . . . . 10 (0(,)1) ⊆ ℝ
6665, 5sstri 3959 . . . . . . . . 9 (0(,)1) ⊆ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → (0(,)1) ⊆ ℂ)
6867sselda 3949 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
697a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → Λ:ℕ⟶ℂ)
7064, 68, 69vtscl 34636 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((Λvts𝑁)‘𝑥) ∈ ℂ)
71 fprodconst 15951 . . . . . 6 (((0..^3) ∈ Fin ∧ ((Λvts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
7263, 70, 71syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
73 hashfzo0 14402 . . . . . . . 8 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
7449, 73ax-mp 5 . . . . . . 7 (♯‘(0..^3)) = 3
7574a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(0..^3)) = 3)
7675oveq2d 7406 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))) = (((Λvts𝑁)‘𝑥)↑3))
7761, 72, 763eqtrd 2769 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑3))
7877oveq1d 7405 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7978itgeq2dv 25690 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
8015, 57, 793eqtr3d 2773 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592  {ctp 4596   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   · cmul 11080  -cneg 11413  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  (,)cioo 13313  ..^cfzo 13622  cexp 14033  chash 14302  Σcsu 15659  cprod 15876  expce 16034  πcpi 16039  citg 25526  Λcvma 27009  reprcrepr 34606  vtscvts 34633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015  df-repr 34607  df-vts 34634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator