Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlevma Structured version   Visualization version   GIF version

Theorem circlevma 34650
Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypothesis
Ref Expression
circlevma.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlevma (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlevma
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 circlevma.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12201 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 vmaf 27054 . . . . . . 7 Λ:ℕ⟶ℝ
5 ax-resscn 11060 . . . . . . 7 ℝ ⊆ ℂ
6 fss 6667 . . . . . . 7 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
74, 5, 6mp2an 692 . . . . . 6 Λ:ℕ⟶ℂ
8 cnex 11084 . . . . . . 7 ℂ ∈ V
9 nnex 12128 . . . . . . 7 ℕ ∈ V
10 elmapg 8763 . . . . . . 7 ((ℂ ∈ V ∧ ℕ ∈ V) → (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ))
118, 9, 10mp2an 692 . . . . . 6 (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ)
127, 11mpbir 231 . . . . 5 Λ ∈ (ℂ ↑m ℕ)
1312fconst6 6713 . . . 4 ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ)
1413a1i 11 . . 3 (𝜑 → ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ))
151, 3, 14circlemeth 34648 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
16 c0ex 11103 . . . . . . . . 9 0 ∈ V
1716tpid1 4721 . . . . . . . 8 0 ∈ {0, 1, 2}
18 fzo0to3tp 13649 . . . . . . . 8 (0..^3) = {0, 1, 2}
1917, 18eleqtrri 2830 . . . . . . 7 0 ∈ (0..^3)
20 eleq1 2819 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^3) ↔ 0 ∈ (0..^3)))
2119, 20mpbiri 258 . . . . . 6 (𝑎 = 0 → 𝑎 ∈ (0..^3))
2212elexi 3459 . . . . . . 7 Λ ∈ V
2322fvconst2 7138 . . . . . 6 (𝑎 ∈ (0..^3) → (((0..^3) × {Λ})‘𝑎) = Λ)
2421, 23syl 17 . . . . 5 (𝑎 = 0 → (((0..^3) × {Λ})‘𝑎) = Λ)
25 fveq2 6822 . . . . 5 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
2624, 25fveq12d 6829 . . . 4 (𝑎 = 0 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘0)))
27 1ex 11105 . . . . . . . . 9 1 ∈ V
2827tpid2 4723 . . . . . . . 8 1 ∈ {0, 1, 2}
2928, 18eleqtrri 2830 . . . . . . 7 1 ∈ (0..^3)
30 eleq1 2819 . . . . . . 7 (𝑎 = 1 → (𝑎 ∈ (0..^3) ↔ 1 ∈ (0..^3)))
3129, 30mpbiri 258 . . . . . 6 (𝑎 = 1 → 𝑎 ∈ (0..^3))
3231, 23syl 17 . . . . 5 (𝑎 = 1 → (((0..^3) × {Λ})‘𝑎) = Λ)
33 fveq2 6822 . . . . 5 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3432, 33fveq12d 6829 . . . 4 (𝑎 = 1 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘1)))
35 2ex 12199 . . . . . . . . 9 2 ∈ V
3635tpid3 4726 . . . . . . . 8 2 ∈ {0, 1, 2}
3736, 18eleqtrri 2830 . . . . . . 7 2 ∈ (0..^3)
38 eleq1 2819 . . . . . . 7 (𝑎 = 2 → (𝑎 ∈ (0..^3) ↔ 2 ∈ (0..^3)))
3937, 38mpbiri 258 . . . . . 6 (𝑎 = 2 → 𝑎 ∈ (0..^3))
4039, 23syl 17 . . . . 5 (𝑎 = 2 → (((0..^3) × {Λ})‘𝑎) = Λ)
41 fveq2 6822 . . . . 5 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
4240, 41fveq12d 6829 . . . 4 (𝑎 = 2 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘2)))
4323fveq1d 6824 . . . . . 6 (𝑎 ∈ (0..^3) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
4443adantl 481 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
457a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → Λ:ℕ⟶ℂ)
46 ssidd 3958 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
471nn0zd 12491 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4847adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
492nnnn0i 12386 . . . . . . . . 9 3 ∈ ℕ0
5049a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
51 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
5246, 48, 50, 51reprf 34620 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
5352ffvelcdmda 7017 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
5445, 53ffvelcdmd 7018 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (Λ‘(𝑛𝑎)) ∈ ℂ)
5544, 54eqeltrd 2831 . . . 4 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5626, 34, 42, 55prodfzo03 34611 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5756sumeq2dv 15606 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5823adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((0..^3) × {Λ})‘𝑎) = Λ)
5958oveq1d 7361 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)vts𝑁) = (Λvts𝑁))
6059fveq1d 6824 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ((Λvts𝑁)‘𝑥))
6160prodeq2dv 15826 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥))
62 fzofi 13878 . . . . . . 7 (0..^3) ∈ Fin
6362a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (0..^3) ∈ Fin)
641adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
65 ioossre 13304 . . . . . . . . . 10 (0(,)1) ⊆ ℝ
6665, 5sstri 3944 . . . . . . . . 9 (0(,)1) ⊆ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → (0(,)1) ⊆ ℂ)
6867sselda 3934 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
697a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → Λ:ℕ⟶ℂ)
7064, 68, 69vtscl 34646 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((Λvts𝑁)‘𝑥) ∈ ℂ)
71 fprodconst 15882 . . . . . 6 (((0..^3) ∈ Fin ∧ ((Λvts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
7263, 70, 71syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
73 hashfzo0 14334 . . . . . . . 8 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
7449, 73ax-mp 5 . . . . . . 7 (♯‘(0..^3)) = 3
7574a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(0..^3)) = 3)
7675oveq2d 7362 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))) = (((Λvts𝑁)‘𝑥)↑3))
7761, 72, 763eqtrd 2770 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑3))
7877oveq1d 7361 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7978itgeq2dv 25708 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
8015, 57, 793eqtr3d 2774 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  {csn 4576  {ctp 4580   × cxp 5614  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004  ici 11005   · cmul 11008  -cneg 11342  cn 12122  2c2 12177  3c3 12178  0cn0 12378  cz 12465  (,)cioo 13242  ..^cfzo 13551  cexp 13965  chash 14234  Σcsu 15590  cprod 15807  expce 15965  πcpi 15970  citg 25544  Λcvma 27027  reprcrepr 34616  vtscvts 34643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-symdif 4203  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-prod 15808  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547  df-ibl 25548  df-itg 25549  df-0p 25596  df-limc 25792  df-dv 25793  df-log 26490  df-vma 27033  df-repr 34617  df-vts 34644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator