Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlevma Structured version   Visualization version   GIF version

Theorem circlevma 34657
Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypothesis
Ref Expression
circlevma.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlevma (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlevma
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 circlevma.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12345 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 vmaf 27162 . . . . . . 7 Λ:ℕ⟶ℝ
5 ax-resscn 11212 . . . . . . 7 ℝ ⊆ ℂ
6 fss 6752 . . . . . . 7 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
74, 5, 6mp2an 692 . . . . . 6 Λ:ℕ⟶ℂ
8 cnex 11236 . . . . . . 7 ℂ ∈ V
9 nnex 12272 . . . . . . 7 ℕ ∈ V
10 elmapg 8879 . . . . . . 7 ((ℂ ∈ V ∧ ℕ ∈ V) → (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ))
118, 9, 10mp2an 692 . . . . . 6 (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ)
127, 11mpbir 231 . . . . 5 Λ ∈ (ℂ ↑m ℕ)
1312fconst6 6798 . . . 4 ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ)
1413a1i 11 . . 3 (𝜑 → ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ))
151, 3, 14circlemeth 34655 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
16 c0ex 11255 . . . . . . . . 9 0 ∈ V
1716tpid1 4768 . . . . . . . 8 0 ∈ {0, 1, 2}
18 fzo0to3tp 13791 . . . . . . . 8 (0..^3) = {0, 1, 2}
1917, 18eleqtrri 2840 . . . . . . 7 0 ∈ (0..^3)
20 eleq1 2829 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^3) ↔ 0 ∈ (0..^3)))
2119, 20mpbiri 258 . . . . . 6 (𝑎 = 0 → 𝑎 ∈ (0..^3))
2212elexi 3503 . . . . . . 7 Λ ∈ V
2322fvconst2 7224 . . . . . 6 (𝑎 ∈ (0..^3) → (((0..^3) × {Λ})‘𝑎) = Λ)
2421, 23syl 17 . . . . 5 (𝑎 = 0 → (((0..^3) × {Λ})‘𝑎) = Λ)
25 fveq2 6906 . . . . 5 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
2624, 25fveq12d 6913 . . . 4 (𝑎 = 0 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘0)))
27 1ex 11257 . . . . . . . . 9 1 ∈ V
2827tpid2 4770 . . . . . . . 8 1 ∈ {0, 1, 2}
2928, 18eleqtrri 2840 . . . . . . 7 1 ∈ (0..^3)
30 eleq1 2829 . . . . . . 7 (𝑎 = 1 → (𝑎 ∈ (0..^3) ↔ 1 ∈ (0..^3)))
3129, 30mpbiri 258 . . . . . 6 (𝑎 = 1 → 𝑎 ∈ (0..^3))
3231, 23syl 17 . . . . 5 (𝑎 = 1 → (((0..^3) × {Λ})‘𝑎) = Λ)
33 fveq2 6906 . . . . 5 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3432, 33fveq12d 6913 . . . 4 (𝑎 = 1 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘1)))
35 2ex 12343 . . . . . . . . 9 2 ∈ V
3635tpid3 4773 . . . . . . . 8 2 ∈ {0, 1, 2}
3736, 18eleqtrri 2840 . . . . . . 7 2 ∈ (0..^3)
38 eleq1 2829 . . . . . . 7 (𝑎 = 2 → (𝑎 ∈ (0..^3) ↔ 2 ∈ (0..^3)))
3937, 38mpbiri 258 . . . . . 6 (𝑎 = 2 → 𝑎 ∈ (0..^3))
4039, 23syl 17 . . . . 5 (𝑎 = 2 → (((0..^3) × {Λ})‘𝑎) = Λ)
41 fveq2 6906 . . . . 5 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
4240, 41fveq12d 6913 . . . 4 (𝑎 = 2 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘2)))
4323fveq1d 6908 . . . . . 6 (𝑎 ∈ (0..^3) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
4443adantl 481 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
457a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → Λ:ℕ⟶ℂ)
46 ssidd 4007 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
471nn0zd 12639 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4847adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
492nnnn0i 12534 . . . . . . . . 9 3 ∈ ℕ0
5049a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
51 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
5246, 48, 50, 51reprf 34627 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
5352ffvelcdmda 7104 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
5445, 53ffvelcdmd 7105 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (Λ‘(𝑛𝑎)) ∈ ℂ)
5544, 54eqeltrd 2841 . . . 4 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5626, 34, 42, 55prodfzo03 34618 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5756sumeq2dv 15738 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5823adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((0..^3) × {Λ})‘𝑎) = Λ)
5958oveq1d 7446 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)vts𝑁) = (Λvts𝑁))
6059fveq1d 6908 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ((Λvts𝑁)‘𝑥))
6160prodeq2dv 15958 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥))
62 fzofi 14015 . . . . . . 7 (0..^3) ∈ Fin
6362a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (0..^3) ∈ Fin)
641adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
65 ioossre 13448 . . . . . . . . . 10 (0(,)1) ⊆ ℝ
6665, 5sstri 3993 . . . . . . . . 9 (0(,)1) ⊆ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → (0(,)1) ⊆ ℂ)
6867sselda 3983 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
697a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → Λ:ℕ⟶ℂ)
7064, 68, 69vtscl 34653 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((Λvts𝑁)‘𝑥) ∈ ℂ)
71 fprodconst 16014 . . . . . 6 (((0..^3) ∈ Fin ∧ ((Λvts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
7263, 70, 71syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
73 hashfzo0 14469 . . . . . . . 8 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
7449, 73ax-mp 5 . . . . . . 7 (♯‘(0..^3)) = 3
7574a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(0..^3)) = 3)
7675oveq2d 7447 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))) = (((Λvts𝑁)‘𝑥)↑3))
7761, 72, 763eqtrd 2781 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑3))
7877oveq1d 7446 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7978itgeq2dv 25817 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
8015, 57, 793eqtr3d 2785 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  {csn 4626  {ctp 4630   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   · cmul 11160  -cneg 11493  cn 12266  2c2 12321  3c3 12322  0cn0 12526  cz 12613  (,)cioo 13387  ..^cfzo 13694  cexp 14102  chash 14369  Σcsu 15722  cprod 15939  expce 16097  πcpi 16102  citg 25653  Λcvma 27135  reprcrepr 34623  vtscvts 34650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902  df-log 26598  df-vma 27141  df-repr 34624  df-vts 34651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator