Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlevma Structured version   Visualization version   GIF version

Theorem circlevma 32141
 Description: The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.)
Hypothesis
Ref Expression
circlevma.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlevma (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlevma
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 circlevma.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 11753 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 vmaf 25803 . . . . . . 7 Λ:ℕ⟶ℝ
5 ax-resscn 10632 . . . . . . 7 ℝ ⊆ ℂ
6 fss 6512 . . . . . . 7 ((Λ:ℕ⟶ℝ ∧ ℝ ⊆ ℂ) → Λ:ℕ⟶ℂ)
74, 5, 6mp2an 691 . . . . . 6 Λ:ℕ⟶ℂ
8 cnex 10656 . . . . . . 7 ℂ ∈ V
9 nnex 11680 . . . . . . 7 ℕ ∈ V
10 elmapg 8429 . . . . . . 7 ((ℂ ∈ V ∧ ℕ ∈ V) → (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ))
118, 9, 10mp2an 691 . . . . . 6 (Λ ∈ (ℂ ↑m ℕ) ↔ Λ:ℕ⟶ℂ)
127, 11mpbir 234 . . . . 5 Λ ∈ (ℂ ↑m ℕ)
1312fconst6 6554 . . . 4 ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ)
1413a1i 11 . . 3 (𝜑 → ((0..^3) × {Λ}):(0..^3)⟶(ℂ ↑m ℕ))
151, 3, 14circlemeth 32139 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
16 c0ex 10673 . . . . . . . . 9 0 ∈ V
1716tpid1 4661 . . . . . . . 8 0 ∈ {0, 1, 2}
18 fzo0to3tp 13172 . . . . . . . 8 (0..^3) = {0, 1, 2}
1917, 18eleqtrri 2851 . . . . . . 7 0 ∈ (0..^3)
20 eleq1 2839 . . . . . . 7 (𝑎 = 0 → (𝑎 ∈ (0..^3) ↔ 0 ∈ (0..^3)))
2119, 20mpbiri 261 . . . . . 6 (𝑎 = 0 → 𝑎 ∈ (0..^3))
2212elexi 3429 . . . . . . 7 Λ ∈ V
2322fvconst2 6957 . . . . . 6 (𝑎 ∈ (0..^3) → (((0..^3) × {Λ})‘𝑎) = Λ)
2421, 23syl 17 . . . . 5 (𝑎 = 0 → (((0..^3) × {Λ})‘𝑎) = Λ)
25 fveq2 6658 . . . . 5 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
2624, 25fveq12d 6665 . . . 4 (𝑎 = 0 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘0)))
27 1ex 10675 . . . . . . . . 9 1 ∈ V
2827tpid2 4663 . . . . . . . 8 1 ∈ {0, 1, 2}
2928, 18eleqtrri 2851 . . . . . . 7 1 ∈ (0..^3)
30 eleq1 2839 . . . . . . 7 (𝑎 = 1 → (𝑎 ∈ (0..^3) ↔ 1 ∈ (0..^3)))
3129, 30mpbiri 261 . . . . . 6 (𝑎 = 1 → 𝑎 ∈ (0..^3))
3231, 23syl 17 . . . . 5 (𝑎 = 1 → (((0..^3) × {Λ})‘𝑎) = Λ)
33 fveq2 6658 . . . . 5 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3432, 33fveq12d 6665 . . . 4 (𝑎 = 1 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘1)))
35 2ex 11751 . . . . . . . . 9 2 ∈ V
3635tpid3 4666 . . . . . . . 8 2 ∈ {0, 1, 2}
3736, 18eleqtrri 2851 . . . . . . 7 2 ∈ (0..^3)
38 eleq1 2839 . . . . . . 7 (𝑎 = 2 → (𝑎 ∈ (0..^3) ↔ 2 ∈ (0..^3)))
3937, 38mpbiri 261 . . . . . 6 (𝑎 = 2 → 𝑎 ∈ (0..^3))
4039, 23syl 17 . . . . 5 (𝑎 = 2 → (((0..^3) × {Λ})‘𝑎) = Λ)
41 fveq2 6658 . . . . 5 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
4240, 41fveq12d 6665 . . . 4 (𝑎 = 2 → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛‘2)))
4323fveq1d 6660 . . . . . 6 (𝑎 ∈ (0..^3) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
4443adantl 485 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = (Λ‘(𝑛𝑎)))
457a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → Λ:ℕ⟶ℂ)
46 ssidd 3915 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
471nn0zd 12124 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4847adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
492nnnn0i 11942 . . . . . . . . 9 3 ∈ ℕ0
5049a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
51 simpr 488 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
5246, 48, 50, 51reprf 32111 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
5352ffvelrnda 6842 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
5445, 53ffvelrnd 6843 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (Λ‘(𝑛𝑎)) ∈ ℂ)
5544, 54eqeltrd 2852 . . . 4 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5626, 34, 42, 55prodfzo03 32102 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5756sumeq2dv 15108 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((((0..^3) × {Λ})‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))
5823adantl 485 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((0..^3) × {Λ})‘𝑎) = Λ)
5958oveq1d 7165 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → ((((0..^3) × {Λ})‘𝑎)vts𝑁) = (Λvts𝑁))
6059fveq1d 6660 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (0..^3)) → (((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ((Λvts𝑁)‘𝑥))
6160prodeq2dv 15325 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥))
62 fzofi 13391 . . . . . . 7 (0..^3) ∈ Fin
6362a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (0..^3) ∈ Fin)
641adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
65 ioossre 12840 . . . . . . . . . 10 (0(,)1) ⊆ ℝ
6665, 5sstri 3901 . . . . . . . . 9 (0(,)1) ⊆ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → (0(,)1) ⊆ ℂ)
6867sselda 3892 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
697a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → Λ:ℕ⟶ℂ)
7064, 68, 69vtscl 32137 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((Λvts𝑁)‘𝑥) ∈ ℂ)
71 fprodconst 15380 . . . . . 6 (((0..^3) ∈ Fin ∧ ((Λvts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
7263, 70, 71syl2anc 587 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)((Λvts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))))
73 hashfzo0 13841 . . . . . . . 8 (3 ∈ ℕ0 → (♯‘(0..^3)) = 3)
7449, 73ax-mp 5 . . . . . . 7 (♯‘(0..^3)) = 3
7574a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(0..^3)) = 3)
7675oveq2d 7166 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (((Λvts𝑁)‘𝑥)↑(♯‘(0..^3))) = (((Λvts𝑁)‘𝑥)↑3))
7761, 72, 763eqtrd 2797 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) = (((Λvts𝑁)‘𝑥)↑3))
7877oveq1d 7165 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = ((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
7978itgeq2dv 24481 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((((0..^3) × {Λ})‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
8015, 57, 793eqtr3d 2801 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3858  {csn 4522  {ctp 4526   × cxp 5522  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ↑m cmap 8416  Fincfn 8527  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576  ici 10577   · cmul 10580  -cneg 10909  ℕcn 11674  2c2 11729  3c3 11730  ℕ0cn0 11934  ℤcz 12020  (,)cioo 12779  ..^cfzo 13082  ↑cexp 13479  ♯chash 13740  Σcsu 15090  ∏cprod 15307  expce 15463  πcpi 15468  ∫citg 24318  Λcvma 25776  reprcrepr 32107  vtscvts 32134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-symdif 4147  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-ofr 7406  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-prod 15308  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-dvds 15656  df-gcd 15894  df-prm 16068  df-pc 16229  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-ovol 24164  df-vol 24165  df-mbf 24319  df-itg1 24320  df-itg2 24321  df-ibl 24322  df-itg 24323  df-0p 24370  df-limc 24565  df-dv 24566  df-log 25247  df-vma 25782  df-repr 32108  df-vts 32135 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator