![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsf | Structured version Visualization version GIF version |
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsf | ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | sgnsval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | sgnsval.l | . . 3 ⊢ < = (lt‘𝑅) | |
4 | sgnsval.s | . . 3 ⊢ 𝑆 = (sgns‘𝑅) | |
5 | 1, 2, 3, 4 | sgnsv 32306 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
6 | c0ex 11204 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | tpid2 4773 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
8 | 1ex 11206 | . . . . . 6 ⊢ 1 ∈ V | |
9 | 8 | tpid3 4776 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
10 | negex 11454 | . . . . . 6 ⊢ -1 ∈ V | |
11 | 10 | tpid1 4771 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
12 | 9, 11 | ifcli 4574 | . . . 4 ⊢ if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1} |
13 | 7, 12 | ifcli 4574 | . . 3 ⊢ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1} |
14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}) |
15 | 5, 14 | fmpt3d 7112 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4527 {ctp 4631 class class class wbr 5147 ⟶wf 6536 ‘cfv 6540 0cc0 11106 1c1 11107 -cneg 11441 Basecbs 17140 0gc0g 17381 ltcplt 18257 sgnscsgns 32304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-mulcl 11168 ax-i2m1 11174 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-neg 11443 df-sgns 32305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |