| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsf | Structured version Visualization version GIF version | ||
| Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
| sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
| sgnsval.l | ⊢ < = (lt‘𝑅) |
| sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
| Ref | Expression |
|---|---|
| sgnsf | ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgnsval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | sgnsval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | sgnsval.l | . . 3 ⊢ < = (lt‘𝑅) | |
| 4 | sgnsval.s | . . 3 ⊢ 𝑆 = (sgns‘𝑅) | |
| 5 | 1, 2, 3, 4 | sgnsv 33129 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
| 6 | c0ex 11106 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | tpid2 4720 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
| 8 | 1ex 11108 | . . . . . 6 ⊢ 1 ∈ V | |
| 9 | 8 | tpid3 4723 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
| 10 | negex 11358 | . . . . . 6 ⊢ -1 ∈ V | |
| 11 | 10 | tpid1 4718 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
| 12 | 9, 11 | ifcli 4520 | . . . 4 ⊢ if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1} |
| 13 | 7, 12 | ifcli 4520 | . . 3 ⊢ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1} |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}) |
| 15 | 5, 14 | fmpt3d 7049 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 {ctp 4577 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 0cc0 11006 1c1 11007 -cneg 11345 Basecbs 17120 0gc0g 17343 ltcplt 18214 sgnscsgns 33127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-neg 11347 df-sgns 33128 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |