Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsf Structured version   Visualization version   GIF version

Theorem sgnsf 32878
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsf (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})

Proof of Theorem sgnsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . 3 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . 3 0 = (0g𝑅)
3 sgnsval.l . . 3 < = (lt‘𝑅)
4 sgnsval.s . . 3 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 32876 . 2 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
6 c0ex 11233 . . . . 5 0 ∈ V
76tpid2 4771 . . . 4 0 ∈ {-1, 0, 1}
8 1ex 11235 . . . . . 6 1 ∈ V
98tpid3 4774 . . . . 5 1 ∈ {-1, 0, 1}
10 negex 11483 . . . . . 6 -1 ∈ V
1110tpid1 4769 . . . . 5 -1 ∈ {-1, 0, 1}
129, 11ifcli 4572 . . . 4 if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1}
137, 12ifcli 4572 . . 3 if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}
1413a1i 11 . 2 ((𝑅𝑉𝑥𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1})
155, 14fmpt3d 7121 1 (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  ifcif 4525  {ctp 4629   class class class wbr 5143  wf 6539  cfv 6543  0cc0 11133  1c1 11134  -cneg 11470  Basecbs 17174  0gc0g 17415  ltcplt 18294  sgnscsgns 32874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-mulcl 11195  ax-i2m1 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-neg 11472  df-sgns 32875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator