Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsf Structured version   Visualization version   GIF version

Theorem sgnsf 32308
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsf (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})

Proof of Theorem sgnsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . 3 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . 3 0 = (0g𝑅)
3 sgnsval.l . . 3 < = (lt‘𝑅)
4 sgnsval.s . . 3 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 32306 . 2 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
6 c0ex 11204 . . . . 5 0 ∈ V
76tpid2 4773 . . . 4 0 ∈ {-1, 0, 1}
8 1ex 11206 . . . . . 6 1 ∈ V
98tpid3 4776 . . . . 5 1 ∈ {-1, 0, 1}
10 negex 11454 . . . . . 6 -1 ∈ V
1110tpid1 4771 . . . . 5 -1 ∈ {-1, 0, 1}
129, 11ifcli 4574 . . . 4 if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1}
137, 12ifcli 4574 . . 3 if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}
1413a1i 11 . 2 ((𝑅𝑉𝑥𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1})
155, 14fmpt3d 7112 1 (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4527  {ctp 4631   class class class wbr 5147  wf 6536  cfv 6540  0cc0 11106  1c1 11107  -cneg 11441  Basecbs 17140  0gc0g 17381  ltcplt 18257  sgnscsgns 32304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-mulcl 11168  ax-i2m1 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-neg 11443  df-sgns 32305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator