Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsf Structured version   Visualization version   GIF version

Theorem sgnsf 33119
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsf (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})

Proof of Theorem sgnsf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . 3 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . 3 0 = (0g𝑅)
3 sgnsval.l . . 3 < = (lt‘𝑅)
4 sgnsval.s . . 3 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 33117 . 2 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
6 c0ex 11168 . . . . 5 0 ∈ V
76tpid2 4734 . . . 4 0 ∈ {-1, 0, 1}
8 1ex 11170 . . . . . 6 1 ∈ V
98tpid3 4737 . . . . 5 1 ∈ {-1, 0, 1}
10 negex 11419 . . . . . 6 -1 ∈ V
1110tpid1 4732 . . . . 5 -1 ∈ {-1, 0, 1}
129, 11ifcli 4536 . . . 4 if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1}
137, 12ifcli 4536 . . 3 if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}
1413a1i 11 . 2 ((𝑅𝑉𝑥𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1})
155, 14fmpt3d 7088 1 (𝑅𝑉𝑆:𝐵⟶{-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  {ctp 4593   class class class wbr 5107  wf 6507  cfv 6511  0cc0 11068  1c1 11069  -cneg 11406  Basecbs 17179  0gc0g 17402  ltcplt 18269  sgnscsgns 33115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-neg 11408  df-sgns 33116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator