| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsf | Structured version Visualization version GIF version | ||
| Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
| sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
| sgnsval.l | ⊢ < = (lt‘𝑅) |
| sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
| Ref | Expression |
|---|---|
| sgnsf | ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgnsval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | sgnsval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 3 | sgnsval.l | . . 3 ⊢ < = (lt‘𝑅) | |
| 4 | sgnsval.s | . . 3 ⊢ 𝑆 = (sgns‘𝑅) | |
| 5 | 1, 2, 3, 4 | sgnsv 33117 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
| 6 | c0ex 11168 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | tpid2 4734 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
| 8 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 9 | 8 | tpid3 4737 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
| 10 | negex 11419 | . . . . . 6 ⊢ -1 ∈ V | |
| 11 | 10 | tpid1 4732 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
| 12 | 9, 11 | ifcli 4536 | . . . 4 ⊢ if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1} |
| 13 | 7, 12 | ifcli 4536 | . . 3 ⊢ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1} |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}) |
| 15 | 5, 14 | fmpt3d 7088 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 {ctp 4593 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 0cc0 11068 1c1 11069 -cneg 11406 Basecbs 17179 0gc0g 17402 ltcplt 18269 sgnscsgns 33115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-neg 11408 df-sgns 33116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |