Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsf | Structured version Visualization version GIF version |
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsf | ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | sgnsval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | sgnsval.l | . . 3 ⊢ < = (lt‘𝑅) | |
4 | sgnsval.s | . . 3 ⊢ 𝑆 = (sgns‘𝑅) | |
5 | 1, 2, 3, 4 | sgnsv 31427 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
6 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | tpid2 4706 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
8 | 1ex 10971 | . . . . . 6 ⊢ 1 ∈ V | |
9 | 8 | tpid3 4709 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
10 | negex 11219 | . . . . . 6 ⊢ -1 ∈ V | |
11 | 10 | tpid1 4704 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
12 | 9, 11 | ifcli 4506 | . . . 4 ⊢ if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1} |
13 | 7, 12 | ifcli 4506 | . . 3 ⊢ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1} |
14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}) |
15 | 5, 14 | fmpt3d 6990 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 {ctp 4565 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 0cc0 10871 1c1 10872 -cneg 11206 Basecbs 16912 0gc0g 17150 ltcplt 18026 sgnscsgns 31425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-neg 11208 df-sgns 31426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |