MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp3g Structured version   Visualization version   GIF version

Theorem fvtp3g 7212
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp3g (((𝐶𝑉𝐹𝑊) ∧ (𝐴𝐶𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)

Proof of Theorem fvtp3g
StepHypRef Expression
1 tprot 4754 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6898 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶)
3 necom 2991 . . . . 5 (𝐴𝐶𝐶𝐴)
4 fvtp2g 7211 . . . . . 6 (((𝐶𝑉𝐹𝑊) ∧ (𝐵𝐶𝐶𝐴)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
54expcom 413 . . . . 5 ((𝐵𝐶𝐶𝐴) → ((𝐶𝑉𝐹𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹))
63, 5sylan2b 593 . . . 4 ((𝐵𝐶𝐴𝐶) → ((𝐶𝑉𝐹𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹))
76ancoms 458 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶𝑉𝐹𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹))
87impcom 407 . 2 (((𝐶𝑉𝐹𝑊) ∧ (𝐴𝐶𝐵𝐶)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
92, 8eqtrid 2780 1 (((𝐶𝑉𝐹𝑊) ∧ (𝐴𝐶𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  {ctp 4633  cop 4635  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-res 5690  df-iota 6500  df-fun 6550  df-fv 6556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator