MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp2g Structured version   Visualization version   GIF version

Theorem fvtp2g 6952
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp2g (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)

Proof of Theorem fvtp2g
StepHypRef Expression
1 tprot 4642 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6659 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵)
3 necom 3004 . . . 4 (𝐴𝐵𝐵𝐴)
4 fvtp1g 6951 . . . . . 6 (((𝐵𝑉𝐸𝑊) ∧ (𝐵𝐶𝐵𝐴)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
54expcom 417 . . . . 5 ((𝐵𝐶𝐵𝐴) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
65ancoms 462 . . . 4 ((𝐵𝐴𝐵𝐶) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
73, 6sylanb 584 . . 3 ((𝐴𝐵𝐵𝐶) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
87impcom 411 . 2 (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
92, 8syl5eq 2805 1 (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951  {ctp 4526  cop 4528  cfv 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-res 5536  df-iota 6294  df-fun 6337  df-fv 6343
This theorem is referenced by:  fvtp3g  6953
  Copyright terms: Public domain W3C validator