MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp2g Structured version   Visualization version   GIF version

Theorem fvtp2g 7128
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp2g (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)

Proof of Theorem fvtp2g
StepHypRef Expression
1 tprot 4697 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6818 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵)
3 necom 2981 . . . 4 (𝐴𝐵𝐵𝐴)
4 fvtp1g 7127 . . . . . 6 (((𝐵𝑉𝐸𝑊) ∧ (𝐵𝐶𝐵𝐴)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
54expcom 413 . . . . 5 ((𝐵𝐶𝐵𝐴) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
65ancoms 458 . . . 4 ((𝐵𝐴𝐵𝐶) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
73, 6sylanb 581 . . 3 ((𝐴𝐵𝐵𝐶) → ((𝐵𝑉𝐸𝑊) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸))
87impcom 407 . 2 (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
92, 8eqtrid 2778 1 (((𝐵𝑉𝐸𝑊) ∧ (𝐴𝐵𝐵𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {ctp 4575  cop 4577  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-res 5623  df-iota 6432  df-fun 6478  df-fv 6484
This theorem is referenced by:  fvtp3g  7129
  Copyright terms: Public domain W3C validator