| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvtp3 | Structured version Visualization version GIF version | ||
| Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| fvtp3.1 | ⊢ 𝐶 ∈ V |
| fvtp3.4 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| fvtp3 | ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot 4699 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) |
| 3 | necom 2981 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
| 4 | fvtp3.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 5 | fvtp3.4 | . . . . 5 ⊢ 𝐹 ∈ V | |
| 6 | 4, 5 | fvtp2 7130 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝐴) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
| 7 | 3, 6 | sylan2b 594 | . . 3 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
| 8 | 7 | ancoms 458 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐶) = 𝐹) |
| 9 | 2, 8 | eqtrid 2778 | 1 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐶) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 {ctp 4577 〈cop 4579 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fntpb 7143 rabren3dioph 42907 nnsum4primesodd 47895 nnsum4primesoddALTV 47896 |
| Copyright terms: Public domain | W3C validator |