MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp3 Structured version   Visualization version   GIF version

Theorem fvtp3 7217
Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp3.1 𝐶 ∈ V
fvtp3.4 𝐹 ∈ V
Assertion
Ref Expression
fvtp3 ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)

Proof of Theorem fvtp3
StepHypRef Expression
1 tprot 4754 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6908 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶)
3 necom 2992 . . . 4 (𝐴𝐶𝐶𝐴)
4 fvtp3.1 . . . . 5 𝐶 ∈ V
5 fvtp3.4 . . . . 5 𝐹 ∈ V
64, 5fvtp2 7216 . . . 4 ((𝐵𝐶𝐶𝐴) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
73, 6sylan2b 594 . . 3 ((𝐵𝐶𝐴𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
87ancoms 458 . 2 ((𝐴𝐶𝐵𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
92, 8eqtrid 2787 1 ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  {ctp 4635  cop 4637  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  fntpb  7229  rabren3dioph  42803  nnsum4primesodd  47721  nnsum4primesoddALTV  47722
  Copyright terms: Public domain W3C validator