MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp3 Structured version   Visualization version   GIF version

Theorem fvtp3 7198
Description: The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp3.1 𝐶 ∈ V
fvtp3.4 𝐹 ∈ V
Assertion
Ref Expression
fvtp3 ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)

Proof of Theorem fvtp3
StepHypRef Expression
1 tprot 4754 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6893 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶)
3 necom 2995 . . . 4 (𝐴𝐶𝐶𝐴)
4 fvtp3.1 . . . . 5 𝐶 ∈ V
5 fvtp3.4 . . . . 5 𝐹 ∈ V
64, 5fvtp2 7197 . . . 4 ((𝐵𝐶𝐶𝐴) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
73, 6sylan2b 595 . . 3 ((𝐵𝐶𝐴𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
87ancoms 460 . 2 ((𝐴𝐶𝐵𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐶) = 𝐹)
92, 8eqtrid 2785 1 ((𝐴𝐶𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐶) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  {ctp 4633  cop 4635  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  fntpb  7211  rabren3dioph  41553  nnsum4primesodd  46464  nnsum4primesoddALTV  46465
  Copyright terms: Public domain W3C validator