MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp2 Structured version   Visualization version   GIF version

Theorem fvtp2 7217
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp2.1 𝐵 ∈ V
fvtp2.4 𝐸 ∈ V
Assertion
Ref Expression
fvtp2 ((𝐴𝐵𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)

Proof of Theorem fvtp2
StepHypRef Expression
1 tprot 4748 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}
21fveq1i 6906 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵)
3 necom 2993 . . 3 (𝐴𝐵𝐵𝐴)
4 fvtp2.1 . . . . 5 𝐵 ∈ V
5 fvtp2.4 . . . . 5 𝐸 ∈ V
64, 5fvtp1 7216 . . . 4 ((𝐵𝐶𝐵𝐴) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
76ancoms 458 . . 3 ((𝐵𝐴𝐵𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
83, 7sylanb 581 . 2 ((𝐴𝐵𝐵𝐶) → ({⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩, ⟨𝐴, 𝐷⟩}‘𝐵) = 𝐸)
92, 8eqtrid 2788 1 ((𝐴𝐵𝐵𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐵) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  {ctp 4629  cop 4631  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-iota 6513  df-fun 6562  df-fv 6568
This theorem is referenced by:  fvtp3  7218  fntpb  7230  rabren3dioph  42831  nnsum4primesodd  47788  nnsum4primesoddALTV  47789
  Copyright terms: Public domain W3C validator