Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvtp2 | Structured version Visualization version GIF version |
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp2.1 | ⊢ 𝐵 ∈ V |
fvtp2.4 | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
fvtp2 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tprot 4642 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉} | |
2 | 1 | fveq1i 6659 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) |
3 | necom 3004 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | fvtp2.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | fvtp2.4 | . . . . 5 ⊢ 𝐸 ∈ V | |
6 | 4, 5 | fvtp1 6948 | . . . 4 ⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
7 | 6 | ancoms 462 | . . 3 ⊢ ((𝐵 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
8 | 3, 7 | sylanb 584 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉, 〈𝐴, 𝐷〉}‘𝐵) = 𝐸) |
9 | 2, 8 | syl5eq 2805 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐵) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 {ctp 4526 〈cop 4528 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-res 5536 df-iota 6294 df-fun 6337 df-fv 6343 |
This theorem is referenced by: fvtp3 6950 fntpb 6963 rabren3dioph 40151 nnsum4primesodd 44703 nnsum4primesoddALTV 44704 |
Copyright terms: Public domain | W3C validator |