MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpred Structured version   Visualization version   GIF version

Theorem trpred 6332
Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.)
Assertion
Ref Expression
trpred ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)

Proof of Theorem trpred
StepHypRef Expression
1 predep 6331 . . 3 (𝑋𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
21adantl 482 . 2 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
3 trss 5276 . . . 4 (Tr 𝐴 → (𝑋𝐴𝑋𝐴))
43imp 407 . . 3 ((Tr 𝐴𝑋𝐴) → 𝑋𝐴)
5 sseqin2 4215 . . 3 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
64, 5sylib 217 . 2 ((Tr 𝐴𝑋𝐴) → (𝐴𝑋) = 𝑋)
72, 6eqtrd 2772 1 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3947  wss 3948  Tr wtr 5265   E cep 5579  Predcpred 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300
This theorem is referenced by:  predon  7772  omsinds  7875
  Copyright terms: Public domain W3C validator