| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trpred | Structured version Visualization version GIF version | ||
| Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| trpred | ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predep 6306 | . . 3 ⊢ (𝑋 ∈ 𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| 3 | trss 5228 | . . . 4 ⊢ (Tr 𝐴 → (𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ⊆ 𝐴) |
| 5 | sseqin2 4189 | . . 3 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
| 7 | 2, 6 | eqtrd 2765 | 1 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 Tr wtr 5217 E cep 5540 Predcpred 6276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 |
| This theorem is referenced by: predon 7765 omsinds 7866 trfr 44959 |
| Copyright terms: Public domain | W3C validator |