![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trpred | Structured version Visualization version GIF version |
Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.) |
Ref | Expression |
---|---|
trpred | ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep 6336 | . . 3 ⊢ (𝑋 ∈ 𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) | |
2 | 1 | adantl 481 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
3 | trss 5276 | . . . 4 ⊢ (Tr 𝐴 → (𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴)) | |
4 | 3 | imp 406 | . . 3 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ⊆ 𝐴) |
5 | sseqin2 4215 | . . 3 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
7 | 2, 6 | eqtrd 2768 | 1 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 Tr wtr 5265 E cep 5581 Predcpred 6304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5582 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 |
This theorem is referenced by: predon 7788 omsinds 7891 |
Copyright terms: Public domain | W3C validator |