MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpred Structured version   Visualization version   GIF version

Theorem trpred 6320
Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.)
Assertion
Ref Expression
trpred ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)

Proof of Theorem trpred
StepHypRef Expression
1 predep 6319 . . 3 (𝑋𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
21adantl 481 . 2 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
3 trss 5240 . . . 4 (Tr 𝐴 → (𝑋𝐴𝑋𝐴))
43imp 406 . . 3 ((Tr 𝐴𝑋𝐴) → 𝑋𝐴)
5 sseqin2 4198 . . 3 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
64, 5sylib 218 . 2 ((Tr 𝐴𝑋𝐴) → (𝐴𝑋) = 𝑋)
72, 6eqtrd 2770 1 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926  Tr wtr 5229   E cep 5552  Predcpred 6289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290
This theorem is referenced by:  predon  7780  omsinds  7882  trfr  44987
  Copyright terms: Public domain W3C validator