![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trpred | Structured version Visualization version GIF version |
Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.) |
Ref | Expression |
---|---|
trpred | ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predep 6331 | . . 3 ⊢ (𝑋 ∈ 𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) | |
2 | 1 | adantl 482 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
3 | trss 5276 | . . . 4 ⊢ (Tr 𝐴 → (𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴)) | |
4 | 3 | imp 407 | . . 3 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ⊆ 𝐴) |
5 | sseqin2 4215 | . . 3 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
7 | 2, 6 | eqtrd 2772 | 1 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3947 ⊆ wss 3948 Tr wtr 5265 E cep 5579 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 |
This theorem is referenced by: predon 7772 omsinds 7875 |
Copyright terms: Public domain | W3C validator |