| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trpred | Structured version Visualization version GIF version | ||
| Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| trpred | ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predep 6277 | . . 3 ⊢ (𝑋 ∈ 𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴 ∩ 𝑋)) |
| 3 | trss 5208 | . . . 4 ⊢ (Tr 𝐴 → (𝑋 ∈ 𝐴 → 𝑋 ⊆ 𝐴)) | |
| 4 | 3 | imp 406 | . . 3 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ⊆ 𝐴) |
| 5 | sseqin2 4173 | . . 3 ⊢ (𝑋 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑋) = 𝑋) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∩ 𝑋) = 𝑋) |
| 7 | 2, 6 | eqtrd 2766 | 1 ⊢ ((Tr 𝐴 ∧ 𝑋 ∈ 𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 Tr wtr 5198 E cep 5515 Predcpred 6247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 |
| This theorem is referenced by: predon 7719 omsinds 7817 trfr 44994 |
| Copyright terms: Public domain | W3C validator |