MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trpred Structured version   Visualization version   GIF version

Theorem trpred 6307
Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024.)
Assertion
Ref Expression
trpred ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)

Proof of Theorem trpred
StepHypRef Expression
1 predep 6306 . . 3 (𝑋𝐴 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
21adantl 481 . 2 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
3 trss 5228 . . . 4 (Tr 𝐴 → (𝑋𝐴𝑋𝐴))
43imp 406 . . 3 ((Tr 𝐴𝑋𝐴) → 𝑋𝐴)
5 sseqin2 4189 . . 3 (𝑋𝐴 ↔ (𝐴𝑋) = 𝑋)
64, 5sylib 218 . 2 ((Tr 𝐴𝑋𝐴) → (𝐴𝑋) = 𝑋)
72, 6eqtrd 2765 1 ((Tr 𝐴𝑋𝐴) → Pred( E , 𝐴, 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  Tr wtr 5217   E cep 5540  Predcpred 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277
This theorem is referenced by:  predon  7765  omsinds  7866  trfr  44959
  Copyright terms: Public domain W3C validator