| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version GIF version | ||
| Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| omsinds | ⊢ (𝐴 ∈ ω → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7803 | . . 3 ⊢ ω ⊆ On | |
| 2 | epweon 7711 | . . 3 ⊢ E We On | |
| 3 | wess 5605 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
| 4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
| 5 | epse 5601 | . 2 ⊢ E Se ω | |
| 6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 8 | trom 7808 | . . . . 5 ⊢ Tr ω | |
| 9 | trpred 6279 | . . . . 5 ⊢ ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
| 11 | 10 | raleqdv 3289 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
| 12 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 13 | 11, 12 | sylbid 240 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
| 14 | 4, 5, 6, 7, 13 | wfis3 6305 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 Tr wtr 5199 E cep 5518 We wwe 5571 Predcpred 6248 Oncon0 6307 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-om 7800 |
| This theorem is referenced by: madefi 27827 onsfi 28252 |
| Copyright terms: Public domain | W3C validator |