![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version GIF version |
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
Ref | Expression |
---|---|
omsinds | ⊢ (𝐴 ∈ ω → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omsson 7859 | . . 3 ⊢ ω ⊆ On | |
2 | epweon 7762 | . . 3 ⊢ E We On | |
3 | wess 5664 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
5 | epse 5660 | . 2 ⊢ E Se ω | |
6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
8 | trom 7864 | . . . . 5 ⊢ Tr ω | |
9 | trpred 6333 | . . . . 5 ⊢ ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥) | |
10 | 8, 9 | mpan 689 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
11 | 10 | raleqdv 3326 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
12 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
13 | 11, 12 | sylbid 239 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
14 | 4, 5, 6, 7, 13 | wfis3 6363 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3949 Tr wtr 5266 E cep 5580 We wwe 5631 Predcpred 6300 Oncon0 6365 ωcom 7855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-om 7856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |