MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsinds Structured version   Visualization version   GIF version

Theorem omsinds 7345
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.)
Hypotheses
Ref Expression
omsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
omsinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
omsinds.3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
omsinds (𝐴 ∈ ω → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem omsinds
StepHypRef Expression
1 omsson 7330 . . 3 ω ⊆ On
2 epweon 7243 . . 3 E We On
3 wess 5329 . . 3 (ω ⊆ On → ( E We On → E We ω))
41, 2, 3mp2 9 . 2 E We ω
5 epse 5325 . 2 E Se ω
6 omsinds.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
7 omsinds.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
8 predep 5946 . . . . 5 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = (ω ∩ 𝑥))
9 ordom 7335 . . . . . . 7 Ord ω
10 ordtr 5977 . . . . . . 7 (Ord ω → Tr ω)
11 trss 4984 . . . . . . 7 (Tr ω → (𝑥 ∈ ω → 𝑥 ⊆ ω))
129, 10, 11mp2b 10 . . . . . 6 (𝑥 ∈ ω → 𝑥 ⊆ ω)
13 sseqin2 4044 . . . . . 6 (𝑥 ⊆ ω ↔ (ω ∩ 𝑥) = 𝑥)
1412, 13sylib 210 . . . . 5 (𝑥 ∈ ω → (ω ∩ 𝑥) = 𝑥)
158, 14eqtrd 2861 . . . 4 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥)
1615raleqdv 3356 . . 3 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦𝑥 𝜓))
17 omsinds.3 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
1816, 17sylbid 232 . 2 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓𝜑))
194, 5, 6, 7, 18wfis3 5961 1 (𝐴 ∈ ω → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wral 3117  cin 3797  wss 3798  Tr wtr 4975   E cep 5254   We wwe 5300  Predcpred 5919  Ord word 5962  Oncon0 5963  ωcom 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-tr 4976  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-om 7327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator