|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version GIF version | ||
| Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | 
| omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | 
| Ref | Expression | 
|---|---|
| omsinds | ⊢ (𝐴 ∈ ω → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omsson 7891 | . . 3 ⊢ ω ⊆ On | |
| 2 | epweon 7795 | . . 3 ⊢ E We On | |
| 3 | wess 5671 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
| 4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω | 
| 5 | epse 5667 | . 2 ⊢ E Se ω | |
| 6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 8 | trom 7896 | . . . . 5 ⊢ Tr ω | |
| 9 | trpred 6352 | . . . . 5 ⊢ ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) | 
| 11 | 10 | raleqdv 3326 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) | 
| 12 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 13 | 11, 12 | sylbid 240 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) | 
| 14 | 4, 5, 6, 7, 13 | wfis3 6382 | 1 ⊢ (𝐴 ∈ ω → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 Tr wtr 5259 E cep 5583 We wwe 5636 Predcpred 6320 Oncon0 6384 ωcom 7887 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-om 7888 | 
| This theorem is referenced by: madefi 27950 | 
| Copyright terms: Public domain | W3C validator |