MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsinds Structured version   Visualization version   GIF version

Theorem omsinds 7866
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.)
Hypotheses
Ref Expression
omsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
omsinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
omsinds.3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
omsinds (𝐴 ∈ ω → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem omsinds
StepHypRef Expression
1 omsson 7849 . . 3 ω ⊆ On
2 epweon 7754 . . 3 E We On
3 wess 5627 . . 3 (ω ⊆ On → ( E We On → E We ω))
41, 2, 3mp2 9 . 2 E We ω
5 epse 5623 . 2 E Se ω
6 omsinds.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
7 omsinds.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
8 trom 7854 . . . . 5 Tr ω
9 trpred 6307 . . . . 5 ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥)
108, 9mpan 690 . . . 4 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥)
1110raleqdv 3301 . . 3 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦𝑥 𝜓))
12 omsinds.3 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
1311, 12sylbid 240 . 2 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓𝜑))
144, 5, 6, 7, 13wfis3 6333 1 (𝐴 ∈ ω → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  wss 3917  Tr wtr 5217   E cep 5540   We wwe 5593  Predcpred 6276  Oncon0 6335  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-om 7846
This theorem is referenced by:  madefi  27831  onsfi  28254
  Copyright terms: Public domain W3C validator