| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version GIF version | ||
| Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| omsinds | ⊢ (𝐴 ∈ ω → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7846 | . . 3 ⊢ ω ⊆ On | |
| 2 | epweon 7751 | . . 3 ⊢ E We On | |
| 3 | wess 5624 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
| 4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
| 5 | epse 5620 | . 2 ⊢ E Se ω | |
| 6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 8 | trom 7851 | . . . . 5 ⊢ Tr ω | |
| 9 | trpred 6304 | . . . . 5 ⊢ ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
| 11 | 10 | raleqdv 3299 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
| 12 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 13 | 11, 12 | sylbid 240 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
| 14 | 4, 5, 6, 7, 13 | wfis3 6330 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 Tr wtr 5214 E cep 5537 We wwe 5590 Predcpred 6273 Oncon0 6332 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-om 7843 |
| This theorem is referenced by: madefi 27824 onsfi 28247 |
| Copyright terms: Public domain | W3C validator |