MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsinds Structured version   Visualization version   GIF version

Theorem omsinds 7872
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.)
Hypotheses
Ref Expression
omsinds.1 (𝑥 = 𝑦 → (𝜑𝜓))
omsinds.2 (𝑥 = 𝐴 → (𝜑𝜒))
omsinds.3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
omsinds (𝐴 ∈ ω → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem omsinds
StepHypRef Expression
1 omsson 7855 . . 3 ω ⊆ On
2 epweon 7758 . . 3 E We On
3 wess 5656 . . 3 (ω ⊆ On → ( E We On → E We ω))
41, 2, 3mp2 9 . 2 E We ω
5 epse 5652 . 2 E Se ω
6 omsinds.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
7 omsinds.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
8 trom 7860 . . . . 5 Tr ω
9 trpred 6325 . . . . 5 ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥)
108, 9mpan 687 . . . 4 (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥)
1110raleqdv 3319 . . 3 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦𝑥 𝜓))
12 omsinds.3 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 𝜓𝜑))
1311, 12sylbid 239 . 2 (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓𝜑))
144, 5, 6, 7, 13wfis3 6355 1 (𝐴 ∈ ω → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3055  wss 3943  Tr wtr 5258   E cep 5572   We wwe 5623  Predcpred 6292  Oncon0 6357  ωcom 7851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-om 7852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator