| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsinds | Structured version Visualization version GIF version | ||
| Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| omsinds.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| omsinds.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| omsinds.3 | ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| omsinds | ⊢ (𝐴 ∈ ω → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsson 7800 | . . 3 ⊢ ω ⊆ On | |
| 2 | epweon 7708 | . . 3 ⊢ E We On | |
| 3 | wess 5600 | . . 3 ⊢ (ω ⊆ On → ( E We On → E We ω)) | |
| 4 | 1, 2, 3 | mp2 9 | . 2 ⊢ E We ω |
| 5 | epse 5596 | . 2 ⊢ E Se ω | |
| 6 | omsinds.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 7 | omsinds.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 8 | trom 7805 | . . . . 5 ⊢ Tr ω | |
| 9 | trpred 6278 | . . . . 5 ⊢ ((Tr ω ∧ 𝑥 ∈ ω) → Pred( E , ω, 𝑥) = 𝑥) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ ω → Pred( E , ω, 𝑥) = 𝑥) |
| 11 | 10 | raleqdv 3292 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 ↔ ∀𝑦 ∈ 𝑥 𝜓)) |
| 12 | omsinds.3 | . . 3 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 13 | 11, 12 | sylbid 240 | . 2 ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ Pred ( E , ω, 𝑥)𝜓 → 𝜑)) |
| 14 | 4, 5, 6, 7, 13 | wfis3 6304 | 1 ⊢ (𝐴 ∈ ω → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 Tr wtr 5196 E cep 5513 We wwe 5566 Predcpred 6247 Oncon0 6306 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-om 7797 |
| This theorem is referenced by: madefi 27858 onsfi 28283 |
| Copyright terms: Public domain | W3C validator |