MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predon Structured version   Visualization version   GIF version

Theorem predon 7806
Description: The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
predon (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)

Proof of Theorem predon
StepHypRef Expression
1 tron 6407 . 2 Tr On
2 trpred 6352 . 2 ((Tr On ∧ 𝐴 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
31, 2mpan 690 1 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Tr wtr 5259   E cep 5583  Predcpred 6320  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388
This theorem is referenced by:  dfrecs3  8412  dfrecs3OLD  8413  tfr2ALT  8441  tfr3ALT  8442  on2recsov  8706  on2ind  8707  on3ind  8708
  Copyright terms: Public domain W3C validator