![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predon | Structured version Visualization version GIF version |
Description: The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
predon | ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tron 6409 | . 2 ⊢ Tr On | |
2 | trpred 6354 | . 2 ⊢ ((Tr On ∧ 𝐴 ∈ On) → Pred( E , On, 𝐴) = 𝐴) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Tr wtr 5265 E cep 5588 Predcpred 6322 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 |
This theorem is referenced by: dfrecs3 8411 dfrecs3OLD 8412 tfr2ALT 8440 tfr3ALT 8441 on2recsov 8705 on2ind 8706 on3ind 8707 |
Copyright terms: Public domain | W3C validator |