| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predon | Structured version Visualization version GIF version | ||
| Description: The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| predon | ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tron 6380 | . 2 ⊢ Tr On | |
| 2 | trpred 6325 | . 2 ⊢ ((Tr On ∧ 𝐴 ∈ On) → Pred( E , On, 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Tr wtr 5234 E cep 5557 Predcpred 6294 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 |
| This theorem is referenced by: dfrecs3 8391 dfrecs3OLD 8392 tfr2ALT 8420 tfr3ALT 8421 on2recsov 8685 on2ind 8686 on3ind 8687 |
| Copyright terms: Public domain | W3C validator |