MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predon Structured version   Visualization version   GIF version

Theorem predon 7612
Description: The predecessor of an ordinal under E and On is itself. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by BJ, 16-Oct-2024.)
Assertion
Ref Expression
predon (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)

Proof of Theorem predon
StepHypRef Expression
1 tron 6274 . 2 Tr On
2 trpred 6223 . 2 ((Tr On ∧ 𝐴 ∈ On) → Pred( E , On, 𝐴) = 𝐴)
31, 2mpan 686 1 (𝐴 ∈ On → Pred( E , On, 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Tr wtr 5187   E cep 5485  Predcpred 6190  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255
This theorem is referenced by:  dfrecs3  8174  dfrecs3OLD  8175  tfr2ALT  8203  tfr3ALT  8204  on2recsov  33754  on2ind  33755  on3ind  33756
  Copyright terms: Public domain W3C validator