| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.26i | Structured version Visualization version GIF version | ||
| Description: All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| tz6.26i.1 | ⊢ 𝑅 We 𝐴 |
| tz6.26i.2 | ⊢ 𝑅 Se 𝐴 |
| Ref | Expression |
|---|---|
| tz6.26i | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz6.26i.1 | . 2 ⊢ 𝑅 We 𝐴 | |
| 2 | tz6.26i.2 | . 2 ⊢ 𝑅 Se 𝐴 | |
| 3 | tz6.26 6349 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | |
| 4 | 1, 2, 3 | mpanl12 702 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2931 ∃wrex 3059 ⊆ wss 3933 ∅c0 4315 Se wse 5617 We wwe 5618 Predcpred 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 |
| This theorem is referenced by: wfrlem16OLD 8347 |
| Copyright terms: Public domain | W3C validator |