MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.26i Structured version   Visualization version   GIF version

Theorem tz6.26i 6288
Description: All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
tz6.26i.1 𝑅 We 𝐴
tz6.26i.2 𝑅 Se 𝐴
Assertion
Ref Expression
tz6.26i ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem tz6.26i
StepHypRef Expression
1 tz6.26i.1 . 2 𝑅 We 𝐴
2 tz6.26i.2 . 2 𝑅 Se 𝐴
3 tz6.26 6286 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
41, 2, 3mpanl12 699 1 ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wne 2940  wrex 3070  wss 3898  c0 4269   Se wse 5573   We wwe 5574  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238
This theorem is referenced by:  wfrlem16OLD  8225
  Copyright terms: Public domain W3C validator