![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.26i | Structured version Visualization version GIF version |
Description: All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
tz6.26i.1 | ⊢ 𝑅 We 𝐴 |
tz6.26i.2 | ⊢ 𝑅 Se 𝐴 |
Ref | Expression |
---|---|
tz6.26i | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz6.26i.1 | . 2 ⊢ 𝑅 We 𝐴 | |
2 | tz6.26i.2 | . 2 ⊢ 𝑅 Se 𝐴 | |
3 | tz6.26 6360 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | |
4 | 1, 2, 3 | mpanl12 700 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ≠ wne 2930 ∃wrex 3060 ⊆ wss 3947 ∅c0 4325 Se wse 5635 We wwe 5636 Predcpred 6311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 |
This theorem is referenced by: wfrlem16OLD 8354 |
Copyright terms: Public domain | W3C validator |