![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.26i | Structured version Visualization version GIF version |
Description: All nonempty subclasses of a class having a well-ordered set-like relation 𝑅 have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
tz6.26i.1 | ⊢ 𝑅 We 𝐴 |
tz6.26i.2 | ⊢ 𝑅 Se 𝐴 |
Ref | Expression |
---|---|
tz6.26i | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz6.26i.1 | . 2 ⊢ 𝑅 We 𝐴 | |
2 | tz6.26i.2 | . 2 ⊢ 𝑅 Se 𝐴 | |
3 | tz6.26 6356 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | |
4 | 1, 2, 3 | mpanl12 700 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ≠ wne 2936 ∃wrex 3066 ⊆ wss 3947 ∅c0 4324 Se wse 5633 We wwe 5634 Predcpred 6307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-cnv 5688 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 |
This theorem is referenced by: wfrlem16OLD 8349 |
Copyright terms: Public domain | W3C validator |