Step | Hyp | Ref
| Expression |
1 | | wfrlem13OLD.3 |
. . 3
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
2 | 1 | wfrdmssOLD 8117 |
. 2
⊢ dom 𝐹 ⊆ 𝐴 |
3 | | eldifn 4058 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) |
4 | | ssun2 4103 |
. . . . . . . . 9
⊢ {𝑧} ⊆ (dom 𝐹 ∪ {𝑧}) |
5 | | vsnid 4595 |
. . . . . . . . 9
⊢ 𝑧 ∈ {𝑧} |
6 | 4, 5 | sselii 3914 |
. . . . . . . 8
⊢ 𝑧 ∈ (dom 𝐹 ∪ {𝑧}) |
7 | | wfrlem13OLD.4 |
. . . . . . . . . 10
⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
8 | 7 | dmeqi 5802 |
. . . . . . . . 9
⊢ dom 𝐶 = dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
9 | | dmun 5808 |
. . . . . . . . 9
⊢ dom
(𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
10 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V |
11 | 10 | dmsnop 6108 |
. . . . . . . . . 10
⊢ dom
{〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} = {𝑧} |
12 | 11 | uneq2i 4090 |
. . . . . . . . 9
⊢ (dom
𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
13 | 8, 9, 12 | 3eqtri 2770 |
. . . . . . . 8
⊢ dom 𝐶 = (dom 𝐹 ∪ {𝑧}) |
14 | 6, 13 | eleqtrri 2838 |
. . . . . . 7
⊢ 𝑧 ∈ dom 𝐶 |
15 | | wfrlem13OLD.1 |
. . . . . . . . . . . 12
⊢ 𝑅 We 𝐴 |
16 | | wfrlem13OLD.2 |
. . . . . . . . . . . 12
⊢ 𝑅 Se 𝐴 |
17 | 15, 16, 1, 7 | wfrlem15OLD 8125 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
18 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝐶 ⊆ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ⊆ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
20 | | dfwrecsOLD 8100 |
. . . . . . . . . . 11
⊢
wrecs(𝑅, 𝐴, 𝐺) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
21 | 1, 20 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐹 = ∪
{𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
22 | 19, 21 | sseqtrrdi 3968 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ⊆ 𝐹) |
23 | | dmss 5800 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐹 → dom 𝐶 ⊆ dom 𝐹) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐶 ⊆ dom 𝐹) |
25 | 24 | sseld 3916 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑧 ∈ dom 𝐶 → 𝑧 ∈ dom 𝐹)) |
26 | 14, 25 | mpi 20 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝑧 ∈ dom 𝐹) |
27 | 3, 26 | mtand 812 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
28 | 27 | nrex 3196 |
. . . 4
⊢ ¬
∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ |
29 | | df-ne 2943 |
. . . . 5
⊢ ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅) |
30 | | difss 4062 |
. . . . . 6
⊢ (𝐴 ∖ dom 𝐹) ⊆ 𝐴 |
31 | 15, 16 | tz6.26i 6237 |
. . . . . 6
⊢ (((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
32 | 30, 31 | mpan 686 |
. . . . 5
⊢ ((𝐴 ∖ dom 𝐹) ≠ ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
33 | 29, 32 | sylbir 234 |
. . . 4
⊢ (¬
(𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
34 | 28, 33 | mt3 200 |
. . 3
⊢ (𝐴 ∖ dom 𝐹) = ∅ |
35 | | ssdif0 4294 |
. . 3
⊢ (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅) |
36 | 34, 35 | mpbir 230 |
. 2
⊢ 𝐴 ⊆ dom 𝐹 |
37 | 2, 36 | eqssi 3933 |
1
⊢ dom 𝐹 = 𝐴 |