MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem16OLD Structured version   Visualization version   GIF version

Theorem wfrlem16OLD 8365
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. If 𝑧 is 𝑅 minimal in (𝐴 ∖ dom 𝐹), then 𝐶 is acceptable and thus a subset of 𝐹, but dom 𝐶 is bigger than dom 𝐹. Thus, 𝑧 cannot be minimal, so (𝐴 ∖ dom 𝐹) must be empty, and (due to wfrdmssOLD 8356), dom 𝐹 = 𝐴. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem16OLD dom 𝐹 = 𝐴
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝑅
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem16OLD
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem13OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrdmssOLD 8356 . 2 dom 𝐹𝐴
3 eldifn 4131 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
4 ssun2 4178 . . . . . . . . 9 {𝑧} ⊆ (dom 𝐹 ∪ {𝑧})
5 vsnid 4662 . . . . . . . . 9 𝑧 ∈ {𝑧}
64, 5sselii 3979 . . . . . . . 8 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
7 wfrlem13OLD.4 . . . . . . . . . 10 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
87dmeqi 5914 . . . . . . . . 9 dom 𝐶 = dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 dmun 5920 . . . . . . . . 9 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
10 fvex 6918 . . . . . . . . . . 11 (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
1110dmsnop 6235 . . . . . . . . . 10 dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
1211uneq2i 4164 . . . . . . . . 9 (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
138, 9, 123eqtri 2768 . . . . . . . 8 dom 𝐶 = (dom 𝐹 ∪ {𝑧})
146, 13eleqtrri 2839 . . . . . . 7 𝑧 ∈ dom 𝐶
15 wfrlem13OLD.1 . . . . . . . . . . . 12 𝑅 We 𝐴
16 wfrlem13OLD.2 . . . . . . . . . . . 12 𝑅 Se 𝐴
1715, 16, 1, 7wfrlem15OLD 8364 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
18 elssuni 4936 . . . . . . . . . . 11 (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝐶 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1917, 18syl 17 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
20 dfwrecsOLD 8339 . . . . . . . . . . 11 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
211, 20eqtri 2764 . . . . . . . . . 10 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2219, 21sseqtrrdi 4024 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶𝐹)
23 dmss 5912 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2422, 23syl 17 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐶 ⊆ dom 𝐹)
2524sseld 3981 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑧 ∈ dom 𝐶𝑧 ∈ dom 𝐹))
2614, 25mpi 20 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝑧 ∈ dom 𝐹)
273, 26mtand 815 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2827nrex 3073 . . . 4 ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅
29 df-ne 2940 . . . . 5 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
30 difss 4135 . . . . . 6 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
3115, 16tz6.26i 6369 . . . . . 6 (((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3230, 31mpan 690 . . . . 5 ((𝐴 ∖ dom 𝐹) ≠ ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3329, 32sylbir 235 . . . 4 (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3428, 33mt3 201 . . 3 (𝐴 ∖ dom 𝐹) = ∅
35 ssdif0 4365 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
3634, 35mpbir 231 . 2 𝐴 ⊆ dom 𝐹
372, 36eqssi 3999 1 dom 𝐹 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wne 2939  wral 3060  wrex 3069  cdif 3947  cun 3948  wss 3950  c0 4332  {csn 4625  cop 4631   cuni 4906   Se wse 5634   We wwe 5635  dom cdm 5684  cres 5686  Predcpred 6319   Fn wfn 6555  cfv 6560  wrecscwrecs 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338
This theorem is referenced by:  wfr1OLD  8368  wfr2OLD  8369
  Copyright terms: Public domain W3C validator