MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem16OLD Structured version   Visualization version   GIF version

Theorem wfrlem16OLD 8343
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. If 𝑧 is 𝑅 minimal in (𝐴 ∖ dom 𝐹), then 𝐶 is acceptable and thus a subset of 𝐹, but dom 𝐶 is bigger than dom 𝐹. Thus, 𝑧 cannot be minimal, so (𝐴 ∖ dom 𝐹) must be empty, and (due to wfrdmssOLD 8334), dom 𝐹 = 𝐴. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem16OLD dom 𝐹 = 𝐴
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝑅
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem16OLD
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem13OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrdmssOLD 8334 . 2 dom 𝐹𝐴
3 eldifn 4112 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
4 ssun2 4159 . . . . . . . . 9 {𝑧} ⊆ (dom 𝐹 ∪ {𝑧})
5 vsnid 4644 . . . . . . . . 9 𝑧 ∈ {𝑧}
64, 5sselii 3960 . . . . . . . 8 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
7 wfrlem13OLD.4 . . . . . . . . . 10 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
87dmeqi 5889 . . . . . . . . 9 dom 𝐶 = dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
9 dmun 5895 . . . . . . . . 9 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
10 fvex 6894 . . . . . . . . . . 11 (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
1110dmsnop 6210 . . . . . . . . . 10 dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
1211uneq2i 4145 . . . . . . . . 9 (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
138, 9, 123eqtri 2763 . . . . . . . 8 dom 𝐶 = (dom 𝐹 ∪ {𝑧})
146, 13eleqtrri 2834 . . . . . . 7 𝑧 ∈ dom 𝐶
15 wfrlem13OLD.1 . . . . . . . . . . . 12 𝑅 We 𝐴
16 wfrlem13OLD.2 . . . . . . . . . . . 12 𝑅 Se 𝐴
1715, 16, 1, 7wfrlem15OLD 8342 . . . . . . . . . . 11 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
18 elssuni 4918 . . . . . . . . . . 11 (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝐶 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1917, 18syl 17 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
20 dfwrecsOLD 8317 . . . . . . . . . . 11 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
211, 20eqtri 2759 . . . . . . . . . 10 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2219, 21sseqtrrdi 4005 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶𝐹)
23 dmss 5887 . . . . . . . . 9 (𝐶𝐹 → dom 𝐶 ⊆ dom 𝐹)
2422, 23syl 17 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐶 ⊆ dom 𝐹)
2524sseld 3962 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑧 ∈ dom 𝐶𝑧 ∈ dom 𝐹))
2614, 25mpi 20 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝑧 ∈ dom 𝐹)
273, 26mtand 815 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2827nrex 3065 . . . 4 ¬ ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅
29 df-ne 2934 . . . . 5 ((𝐴 ∖ dom 𝐹) ≠ ∅ ↔ ¬ (𝐴 ∖ dom 𝐹) = ∅)
30 difss 4116 . . . . . 6 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
3115, 16tz6.26i 6343 . . . . . 6 (((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3230, 31mpan 690 . . . . 5 ((𝐴 ∖ dom 𝐹) ≠ ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3329, 32sylbir 235 . . . 4 (¬ (𝐴 ∖ dom 𝐹) = ∅ → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
3428, 33mt3 201 . . 3 (𝐴 ∖ dom 𝐹) = ∅
35 ssdif0 4346 . . 3 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∖ dom 𝐹) = ∅)
3634, 35mpbir 231 . 2 𝐴 ⊆ dom 𝐹
372, 36eqssi 3980 1 dom 𝐹 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612   cuni 4888   Se wse 5609   We wwe 5610  dom cdm 5659  cres 5661  Predcpred 6294   Fn wfn 6531  cfv 6536  wrecscwrecs 8315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316
This theorem is referenced by:  wfr1OLD  8346  wfr2OLD  8347
  Copyright terms: Public domain W3C validator