| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniqsw | Structured version Visualization version GIF version | ||
| Description: The union of a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer uniqs 8698. (Contributed by NM, 9-Dec-2008.) (Proof shortened by AV, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| uniqsw | ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resexg 5975 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾ 𝐴) ∈ V) | |
| 2 | uniqs 8698 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cuni 4856 ↾ cres 5616 “ cima 5617 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: uniqs2 8701 ecqs 8703 |
| Copyright terms: Public domain | W3C validator |