MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   GIF version

Theorem icccmplem1 23985
Description: Lemma for icccmp 23988. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝜑,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑦,𝑆   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑆(𝑥,𝑧)   𝑇(𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem icccmplem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 11025 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 icccmp.6 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11025 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 icccmp.7 . . . 4 (𝜑𝐴𝐵)
6 lbicc2 13196 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1370 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
8 icccmp.9 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
98, 7sseldd 3922 . . . . 5 (𝜑𝐴 𝑈)
10 eluni2 4843 . . . . 5 (𝐴 𝑈 ↔ ∃𝑢𝑈 𝐴𝑢)
119, 10sylib 217 . . . 4 (𝜑 → ∃𝑢𝑈 𝐴𝑢)
12 snssi 4741 . . . . . . . 8 (𝑢𝑈 → {𝑢} ⊆ 𝑈)
1312ad2antrl 725 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ⊆ 𝑈)
14 snex 5354 . . . . . . . 8 {𝑢} ∈ V
1514elpw 4537 . . . . . . 7 ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈)
1613, 15sylibr 233 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ 𝒫 𝑈)
17 snfi 8834 . . . . . . 7 {𝑢} ∈ Fin
1817a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ Fin)
1916, 18elind 4128 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin))
202adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → 𝐴 ∈ ℝ*)
21 iccid 13124 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2220, 21syl 17 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) = {𝐴})
23 snssi 4741 . . . . . . 7 (𝐴𝑢 → {𝐴} ⊆ 𝑢)
2423ad2antll 726 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝐴} ⊆ 𝑢)
2522, 24eqsstrd 3959 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢)
26 unieq 4850 . . . . . . . 8 (𝑧 = {𝑢} → 𝑧 = {𝑢})
27 vex 3436 . . . . . . . . 9 𝑢 ∈ V
2827unisn 4861 . . . . . . . 8 {𝑢} = 𝑢
2926, 28eqtrdi 2794 . . . . . . 7 (𝑧 = {𝑢} → 𝑧 = 𝑢)
3029sseq2d 3953 . . . . . 6 (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢))
3130rspcev 3561 . . . . 5 (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3219, 25, 31syl2anc 584 . . . 4 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3311, 32rexlimddv 3220 . . 3 (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
34 oveq2 7283 . . . . . 6 (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴))
3534sseq1d 3952 . . . . 5 (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑧))
3635rexbidv 3226 . . . 4 (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
37 icccmp.4 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3836, 37elrab2 3627 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
397, 33, 38sylanbrc 583 . 2 (𝜑𝐴𝑆)
4037ssrab3 4015 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
4140sseli 3917 . . . 4 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
42 elicc2 13144 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
431, 3, 42syl2anc 584 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4443biimpa 477 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4544simp3d 1143 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4641, 45sylan2 593 . . 3 ((𝜑𝑦𝑆) → 𝑦𝐵)
4746ralrimiva 3103 . 2 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
4839, 47jca 512 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074   × cxp 5587  ran crn 5590  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  Fincfn 8733  cr 10870  *cxr 11008  cle 11010  cmin 11205  (,)cioo 13079  [,]cicc 13082  abscabs 14945  t crest 17131  topGenctg 17148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  icccmplem2  23986  icccmplem3  23987
  Copyright terms: Public domain W3C validator