MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   GIF version

Theorem icccmplem1 24329
Description: Lemma for icccmp 24332. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝜑,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑦,𝑆   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑆(𝑥,𝑧)   𝑇(𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem icccmplem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 11260 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 icccmp.6 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11260 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 icccmp.7 . . . 4 (𝜑𝐴𝐵)
6 lbicc2 13437 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1371 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
8 icccmp.9 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
98, 7sseldd 3982 . . . . 5 (𝜑𝐴 𝑈)
10 eluni2 4911 . . . . 5 (𝐴 𝑈 ↔ ∃𝑢𝑈 𝐴𝑢)
119, 10sylib 217 . . . 4 (𝜑 → ∃𝑢𝑈 𝐴𝑢)
12 snssi 4810 . . . . . . . 8 (𝑢𝑈 → {𝑢} ⊆ 𝑈)
1312ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ⊆ 𝑈)
14 snex 5430 . . . . . . . 8 {𝑢} ∈ V
1514elpw 4605 . . . . . . 7 ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈)
1613, 15sylibr 233 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ 𝒫 𝑈)
17 snfi 9040 . . . . . . 7 {𝑢} ∈ Fin
1817a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ Fin)
1916, 18elind 4193 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin))
202adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → 𝐴 ∈ ℝ*)
21 iccid 13365 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2220, 21syl 17 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) = {𝐴})
23 snssi 4810 . . . . . . 7 (𝐴𝑢 → {𝐴} ⊆ 𝑢)
2423ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝐴} ⊆ 𝑢)
2522, 24eqsstrd 4019 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢)
26 unieq 4918 . . . . . . . 8 (𝑧 = {𝑢} → 𝑧 = {𝑢})
27 unisnv 4930 . . . . . . . 8 {𝑢} = 𝑢
2826, 27eqtrdi 2788 . . . . . . 7 (𝑧 = {𝑢} → 𝑧 = 𝑢)
2928sseq2d 4013 . . . . . 6 (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢))
3029rspcev 3612 . . . . 5 (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3119, 25, 30syl2anc 584 . . . 4 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3211, 31rexlimddv 3161 . . 3 (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
33 oveq2 7413 . . . . . 6 (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴))
3433sseq1d 4012 . . . . 5 (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑧))
3534rexbidv 3178 . . . 4 (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
36 icccmp.4 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3735, 36elrab2 3685 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
387, 32, 37sylanbrc 583 . 2 (𝜑𝐴𝑆)
3936ssrab3 4079 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
4039sseli 3977 . . . 4 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
41 elicc2 13385 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
421, 3, 41syl2anc 584 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4342biimpa 477 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4443simp3d 1144 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4540, 44sylan2 593 . . 3 ((𝜑𝑦𝑆) → 𝑦𝐵)
4645ralrimiva 3146 . 2 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
4738, 46jca 512 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  {crab 3432  cin 3946  wss 3947  𝒫 cpw 4601  {csn 4627   cuni 4907   class class class wbr 5147   × cxp 5673  ran crn 5676  cres 5677  ccom 5679  cfv 6540  (class class class)co 7405  Fincfn 8935  cr 11105  *cxr 11243  cle 11245  cmin 11440  (,)cioo 13320  [,]cicc 13323  abscabs 15177  t crest 17362  topGenctg 17379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-icc 13327
This theorem is referenced by:  icccmplem2  24330  icccmplem3  24331
  Copyright terms: Public domain W3C validator