MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   GIF version

Theorem icccmplem1 24709
Description: Lemma for icccmp 24712. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝜑,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑦,𝑆   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑆(𝑥,𝑧)   𝑇(𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem icccmplem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 11165 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 icccmp.6 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11165 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 icccmp.7 . . . 4 (𝜑𝐴𝐵)
6 lbicc2 13367 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1373 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
8 icccmp.9 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
98, 7sseldd 3936 . . . . 5 (𝜑𝐴 𝑈)
10 eluni2 4862 . . . . 5 (𝐴 𝑈 ↔ ∃𝑢𝑈 𝐴𝑢)
119, 10sylib 218 . . . 4 (𝜑 → ∃𝑢𝑈 𝐴𝑢)
12 snssi 4759 . . . . . . . 8 (𝑢𝑈 → {𝑢} ⊆ 𝑈)
1312ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ⊆ 𝑈)
14 snex 5375 . . . . . . . 8 {𝑢} ∈ V
1514elpw 4555 . . . . . . 7 ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈)
1613, 15sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ 𝒫 𝑈)
17 snfi 8968 . . . . . . 7 {𝑢} ∈ Fin
1817a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ Fin)
1916, 18elind 4151 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin))
202adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → 𝐴 ∈ ℝ*)
21 iccid 13293 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2220, 21syl 17 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) = {𝐴})
23 snssi 4759 . . . . . . 7 (𝐴𝑢 → {𝐴} ⊆ 𝑢)
2423ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝐴} ⊆ 𝑢)
2522, 24eqsstrd 3970 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢)
26 unieq 4869 . . . . . . . 8 (𝑧 = {𝑢} → 𝑧 = {𝑢})
27 unisnv 4878 . . . . . . . 8 {𝑢} = 𝑢
2826, 27eqtrdi 2780 . . . . . . 7 (𝑧 = {𝑢} → 𝑧 = 𝑢)
2928sseq2d 3968 . . . . . 6 (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢))
3029rspcev 3577 . . . . 5 (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3119, 25, 30syl2anc 584 . . . 4 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3211, 31rexlimddv 3136 . . 3 (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
33 oveq2 7357 . . . . . 6 (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴))
3433sseq1d 3967 . . . . 5 (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑧))
3534rexbidv 3153 . . . 4 (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
36 icccmp.4 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3735, 36elrab2 3651 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
387, 32, 37sylanbrc 583 . 2 (𝜑𝐴𝑆)
3936ssrab3 4033 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
4039sseli 3931 . . . 4 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
41 elicc2 13314 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
421, 3, 41syl2anc 584 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4342biimpa 476 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4443simp3d 1144 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4540, 44sylan2 593 . . 3 ((𝜑𝑦𝑆) → 𝑦𝐵)
4645ralrimiva 3121 . 2 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
4738, 46jca 511 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cin 3902  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858   class class class wbr 5092   × cxp 5617  ran crn 5620  cres 5621  ccom 5623  cfv 6482  (class class class)co 7349  Fincfn 8872  cr 11008  *cxr 11148  cle 11150  cmin 11347  (,)cioo 13248  [,]cicc 13251  abscabs 15141  t crest 17324  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-icc 13255
This theorem is referenced by:  icccmplem2  24710  icccmplem3  24711
  Copyright terms: Public domain W3C validator