Step | Hyp | Ref
| Expression |
1 | | icccmp.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | 1 | rexrd 10729 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
3 | | icccmp.6 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | rexrd 10729 |
. . . 4
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
5 | | icccmp.7 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | | lbicc2 12896 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
7 | 2, 4, 5, 6 | syl3anc 1368 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
8 | | icccmp.9 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
9 | 8, 7 | sseldd 3893 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ∪ 𝑈) |
10 | | eluni2 4802 |
. . . . 5
⊢ (𝐴 ∈ ∪ 𝑈
↔ ∃𝑢 ∈
𝑈 𝐴 ∈ 𝑢) |
11 | 9, 10 | sylib 221 |
. . . 4
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝐴 ∈ 𝑢) |
12 | | snssi 4698 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝑈 → {𝑢} ⊆ 𝑈) |
13 | 12 | ad2antrl 727 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → {𝑢} ⊆ 𝑈) |
14 | | snex 5300 |
. . . . . . . 8
⊢ {𝑢} ∈ V |
15 | 14 | elpw 4498 |
. . . . . . 7
⊢ ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈) |
16 | 13, 15 | sylibr 237 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → {𝑢} ∈ 𝒫 𝑈) |
17 | | snfi 8614 |
. . . . . . 7
⊢ {𝑢} ∈ Fin |
18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → {𝑢} ∈ Fin) |
19 | 16, 18 | elind 4099 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin)) |
20 | 2 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → 𝐴 ∈
ℝ*) |
21 | | iccid 12824 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (𝐴[,]𝐴) = {𝐴}) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → (𝐴[,]𝐴) = {𝐴}) |
23 | | snssi 4698 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑢 → {𝐴} ⊆ 𝑢) |
24 | 23 | ad2antll 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → {𝐴} ⊆ 𝑢) |
25 | 22, 24 | eqsstrd 3930 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢) |
26 | | unieq 4809 |
. . . . . . . 8
⊢ (𝑧 = {𝑢} → ∪ 𝑧 = ∪
{𝑢}) |
27 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑢 ∈ V |
28 | 27 | unisn 4820 |
. . . . . . . 8
⊢ ∪ {𝑢}
= 𝑢 |
29 | 26, 28 | eqtrdi 2809 |
. . . . . . 7
⊢ (𝑧 = {𝑢} → ∪ 𝑧 = 𝑢) |
30 | 29 | sseq2d 3924 |
. . . . . 6
⊢ (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢)) |
31 | 30 | rspcev 3541 |
. . . . 5
⊢ (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ ∪ 𝑧) |
32 | 19, 25, 31 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ ∪ 𝑧) |
33 | 11, 32 | rexlimddv 3215 |
. . 3
⊢ (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ ∪ 𝑧) |
34 | | oveq2 7158 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴)) |
35 | 34 | sseq1d 3923 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝐴) ⊆ ∪ 𝑧)) |
36 | 35 | rexbidv 3221 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ ∪ 𝑧)) |
37 | | icccmp.4 |
. . . 4
⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} |
38 | 36, 37 | elrab2 3605 |
. . 3
⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ ∪ 𝑧)) |
39 | 7, 33, 38 | sylanbrc 586 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
40 | 37 | ssrab3 3986 |
. . . . 5
⊢ 𝑆 ⊆ (𝐴[,]𝐵) |
41 | 40 | sseli 3888 |
. . . 4
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ (𝐴[,]𝐵)) |
42 | | elicc2 12844 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
43 | 1, 3, 42 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵))) |
44 | 43 | biimpa 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵)) |
45 | 44 | simp3d 1141 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ≤ 𝐵) |
46 | 41, 45 | sylan2 595 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ≤ 𝐵) |
47 | 46 | ralrimiva 3113 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) |
48 | 39, 47 | jca 515 |
1
⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) |