Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiunelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
fiunelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fiunelcarsg.2 | ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
fiunelcarsg | ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4808 | . . 3 ⊢ (𝑎 = ∅ → ∪ 𝑎 = ∪ ∅) | |
2 | eqidd 2740 | . . 3 ⊢ (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
3 | 1, 2 | eleq12d 2828 | . 2 ⊢ (𝑎 = ∅ → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ ∅ ∈ (toCaraSiga‘𝑀))) |
4 | unieq 4808 | . . 3 ⊢ (𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏) | |
5 | eqidd 2740 | . . 3 ⊢ (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
6 | 4, 5 | eleq12d 2828 | . 2 ⊢ (𝑎 = 𝑏 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝑏 ∈ (toCaraSiga‘𝑀))) |
7 | unieq 4808 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ∪ 𝑎 = ∪ (𝑏 ∪ {𝑥})) | |
8 | eqidd 2740 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
9 | 7, 8 | eleq12d 2828 | . 2 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
10 | unieq 4808 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
11 | eqidd 2740 | . . 3 ⊢ (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
12 | 10, 11 | eleq12d 2828 | . 2 ⊢ (𝑎 = 𝐴 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝐴 ∈ (toCaraSiga‘𝑀))) |
13 | uni0 4827 | . . . 4 ⊢ ∪ ∅ = ∅ | |
14 | difid 4260 | . . . 4 ⊢ (𝑂 ∖ 𝑂) = ∅ | |
15 | 13, 14 | eqtr4i 2765 | . . 3 ⊢ ∪ ∅ = (𝑂 ∖ 𝑂) |
16 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
17 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
18 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
19 | 16, 17, 18 | baselcarsg 31846 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
20 | 16, 17, 19 | difelcarsg 31850 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝑂) ∈ (toCaraSiga‘𝑀)) |
21 | 15, 20 | eqeltrid 2838 | . 2 ⊢ (𝜑 → ∪ ∅ ∈ (toCaraSiga‘𝑀)) |
22 | uniun 4822 | . . . . 5 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ ∪ {𝑥}) | |
23 | vex 3403 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
24 | 23 | unisn 4819 | . . . . . 6 ⊢ ∪ {𝑥} = 𝑥 |
25 | 24 | uneq2i 4051 | . . . . 5 ⊢ (∪ 𝑏 ∪ ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
26 | 22, 25 | eqtri 2762 | . . . 4 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
27 | 16 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
28 | 17 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
29 | simpr 488 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) | |
30 | simpll 767 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑) | |
31 | carsgsiga.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
32 | 16, 17, 18, 31 | carsgsigalem 31855 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
33 | 30, 32 | syl3an1 1164 | . . . . 5 ⊢ ((((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
34 | fiunelcarsg.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) | |
35 | 34 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
36 | simplrr 778 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴 ∖ 𝑏)) | |
37 | 36 | eldifad 3856 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ 𝐴) |
38 | 35, 37 | sseldd 3879 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀)) |
39 | 27, 28, 29, 33, 38 | unelcarsg 31852 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → (∪ 𝑏 ∪ 𝑥) ∈ (toCaraSiga‘𝑀)) |
40 | 26, 39 | eqeltrid 2838 | . . 3 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)) |
41 | 40 | ex 416 | . 2 ⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪ 𝑏 ∈ (toCaraSiga‘𝑀) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
42 | fiunelcarsg.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
43 | 3, 6, 9, 12, 21, 41, 42 | findcard2d 8768 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∖ cdif 3841 ∪ cun 3842 ⊆ wss 3844 ∅c0 4212 𝒫 cpw 4489 {csn 4517 ∪ cuni 4797 class class class wbr 5031 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 ωcom 7602 ≼ cdom 8556 Fincfn 8558 0cc0 10618 +∞cpnf 10753 ≤ cle 10757 +𝑒 cxad 12591 [,]cicc 12827 Σ*cesum 31568 toCaraSigaccarsg 31841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-inf2 9180 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 ax-addf 10697 ax-mulf 10698 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-2o 8135 df-er 8323 df-map 8442 df-pm 8443 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fsupp 8910 df-fi 8951 df-sup 8982 df-inf 8983 df-oi 9050 df-dju 9406 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-q 12434 df-rp 12476 df-xneg 12593 df-xadd 12594 df-xmul 12595 df-ioo 12828 df-ioc 12829 df-ico 12830 df-icc 12831 df-fz 12985 df-fzo 13128 df-fl 13256 df-mod 13332 df-seq 13464 df-exp 13525 df-fac 13729 df-bc 13758 df-hash 13786 df-shft 14519 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-limsup 14921 df-clim 14938 df-rlim 14939 df-sum 15139 df-ef 15516 df-sin 15518 df-cos 15519 df-pi 15521 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-starv 16686 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-unif 16694 df-hom 16695 df-cco 16696 df-rest 16802 df-topn 16803 df-0g 16821 df-gsum 16822 df-topgen 16823 df-pt 16824 df-prds 16827 df-ordt 16880 df-xrs 16881 df-qtop 16886 df-imas 16887 df-xps 16889 df-mre 16963 df-mrc 16964 df-acs 16966 df-ps 17929 df-tsr 17930 df-plusf 17970 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-mhm 18075 df-submnd 18076 df-grp 18225 df-minusg 18226 df-sbg 18227 df-mulg 18346 df-subg 18397 df-cntz 18568 df-cmn 19029 df-abl 19030 df-mgp 19362 df-ur 19374 df-ring 19421 df-cring 19422 df-subrg 19655 df-abv 19710 df-lmod 19758 df-scaf 19759 df-sra 20066 df-rgmod 20067 df-psmet 20212 df-xmet 20213 df-met 20214 df-bl 20215 df-mopn 20216 df-fbas 20217 df-fg 20218 df-cnfld 20221 df-top 21648 df-topon 21665 df-topsp 21687 df-bases 21700 df-cld 21773 df-ntr 21774 df-cls 21775 df-nei 21852 df-lp 21890 df-perf 21891 df-cn 21981 df-cnp 21982 df-haus 22069 df-tx 22316 df-hmeo 22509 df-fil 22600 df-fm 22692 df-flim 22693 df-flf 22694 df-tmd 22826 df-tgp 22827 df-tsms 22881 df-trg 22914 df-xms 23076 df-ms 23077 df-tms 23078 df-nm 23338 df-ngp 23339 df-nrg 23341 df-nlm 23342 df-ii 23632 df-cncf 23633 df-limc 24621 df-dv 24622 df-log 25303 df-esum 31569 df-carsg 31842 |
This theorem is referenced by: carsgclctunlem1 31857 carsgclctunlem2 31859 carsgclctunlem3 31860 |
Copyright terms: Public domain | W3C validator |