Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelcarsg Structured version   Visualization version   GIF version

Theorem fiunelcarsg 34348
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
fiunelcarsg (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem fiunelcarsg
Dummy variables 𝑎 𝑒 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4894 . . 3 (𝑎 = ∅ → 𝑎 = ∅)
2 eqidd 2736 . . 3 (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
31, 2eleq12d 2828 . 2 (𝑎 = ∅ → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∅ ∈ (toCaraSiga‘𝑀)))
4 unieq 4894 . . 3 (𝑎 = 𝑏 𝑎 = 𝑏)
5 eqidd 2736 . . 3 (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
64, 5eleq12d 2828 . 2 (𝑎 = 𝑏 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝑏 ∈ (toCaraSiga‘𝑀)))
7 unieq 4894 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
8 eqidd 2736 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
97, 8eleq12d 2828 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
10 unieq 4894 . . 3 (𝑎 = 𝐴 𝑎 = 𝐴)
11 eqidd 2736 . . 3 (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
1210, 11eleq12d 2828 . 2 (𝑎 = 𝐴 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ (toCaraSiga‘𝑀)))
13 uni0 4911 . . . 4 ∅ = ∅
14 difid 4351 . . . 4 (𝑂𝑂) = ∅
1513, 14eqtr4i 2761 . . 3 ∅ = (𝑂𝑂)
16 carsgval.1 . . . 4 (𝜑𝑂𝑉)
17 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
18 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
1916, 17, 18baselcarsg 34338 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
2016, 17, 19difelcarsg 34342 . . 3 (𝜑 → (𝑂𝑂) ∈ (toCaraSiga‘𝑀))
2115, 20eqeltrid 2838 . 2 (𝜑 ∅ ∈ (toCaraSiga‘𝑀))
22 uniun 4906 . . . . 5 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
23 unisnv 4903 . . . . . 6 {𝑥} = 𝑥
2423uneq2i 4140 . . . . 5 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
2522, 24eqtri 2758 . . . 4 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
2616ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
2717ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
28 simpr 484 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑏 ∈ (toCaraSiga‘𝑀))
29 simpll 766 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑)
30 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
3116, 17, 18, 30carsgsigalem 34347 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
3229, 31syl3an1 1163 . . . . 5 ((((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
33 fiunelcarsg.2 . . . . . . 7 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
35 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴𝑏))
3635eldifad 3938 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥𝐴)
3734, 36sseldd 3959 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀))
3826, 27, 28, 32, 37unelcarsg 34344 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → ( 𝑏𝑥) ∈ (toCaraSiga‘𝑀))
3925, 38eqeltrid 2838 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))
4039ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 ∈ (toCaraSiga‘𝑀) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
41 fiunelcarsg.1 . 2 (𝜑𝐴 ∈ Fin)
423, 6, 9, 12, 21, 40, 41findcard2d 9180 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  cun 3924  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  Fincfn 8959  0cc0 11129  +∞cpnf 11266  cle 11270   +𝑒 cxad 13126  [,]cicc 13365  Σ*cesum 34058  toCaraSigaccarsg 34333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-tsms 24065  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-esum 34059  df-carsg 34334
This theorem is referenced by:  carsgclctunlem1  34349  carsgclctunlem2  34351  carsgclctunlem3  34352
  Copyright terms: Public domain W3C validator