Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelcarsg Structured version   Visualization version   GIF version

Theorem fiunelcarsg 34298
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
fiunelcarsg (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem fiunelcarsg
Dummy variables 𝑎 𝑒 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4923 . . 3 (𝑎 = ∅ → 𝑎 = ∅)
2 eqidd 2736 . . 3 (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
31, 2eleq12d 2833 . 2 (𝑎 = ∅ → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∅ ∈ (toCaraSiga‘𝑀)))
4 unieq 4923 . . 3 (𝑎 = 𝑏 𝑎 = 𝑏)
5 eqidd 2736 . . 3 (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
64, 5eleq12d 2833 . 2 (𝑎 = 𝑏 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝑏 ∈ (toCaraSiga‘𝑀)))
7 unieq 4923 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
8 eqidd 2736 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
97, 8eleq12d 2833 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
10 unieq 4923 . . 3 (𝑎 = 𝐴 𝑎 = 𝐴)
11 eqidd 2736 . . 3 (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
1210, 11eleq12d 2833 . 2 (𝑎 = 𝐴 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ (toCaraSiga‘𝑀)))
13 uni0 4940 . . . 4 ∅ = ∅
14 difid 4382 . . . 4 (𝑂𝑂) = ∅
1513, 14eqtr4i 2766 . . 3 ∅ = (𝑂𝑂)
16 carsgval.1 . . . 4 (𝜑𝑂𝑉)
17 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
18 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
1916, 17, 18baselcarsg 34288 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
2016, 17, 19difelcarsg 34292 . . 3 (𝜑 → (𝑂𝑂) ∈ (toCaraSiga‘𝑀))
2115, 20eqeltrid 2843 . 2 (𝜑 ∅ ∈ (toCaraSiga‘𝑀))
22 uniun 4935 . . . . 5 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
23 unisnv 4932 . . . . . 6 {𝑥} = 𝑥
2423uneq2i 4175 . . . . 5 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
2522, 24eqtri 2763 . . . 4 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
2616ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
2717ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
28 simpr 484 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑏 ∈ (toCaraSiga‘𝑀))
29 simpll 767 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑)
30 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
3116, 17, 18, 30carsgsigalem 34297 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
3229, 31syl3an1 1162 . . . . 5 ((((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
33 fiunelcarsg.2 . . . . . . 7 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
35 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴𝑏))
3635eldifad 3975 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥𝐴)
3734, 36sseldd 3996 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀))
3826, 27, 28, 32, 37unelcarsg 34294 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → ( 𝑏𝑥) ∈ (toCaraSiga‘𝑀))
3925, 38eqeltrid 2843 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))
4039ex 412 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 ∈ (toCaraSiga‘𝑀) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
41 fiunelcarsg.1 . 2 (𝜑𝐴 ∈ Fin)
423, 6, 9, 12, 21, 40, 41findcard2d 9205 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  cun 3961  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  Fincfn 8984  0cc0 11153  +∞cpnf 11290  cle 11294   +𝑒 cxad 13150  [,]cicc 13387  Σ*cesum 34008  toCaraSigaccarsg 34283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-esum 34009  df-carsg 34284
This theorem is referenced by:  carsgclctunlem1  34299  carsgclctunlem2  34301  carsgclctunlem3  34302
  Copyright terms: Public domain W3C validator