Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiunelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
fiunelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fiunelcarsg.2 | ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
fiunelcarsg | ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4855 | . . 3 ⊢ (𝑎 = ∅ → ∪ 𝑎 = ∪ ∅) | |
2 | eqidd 2737 | . . 3 ⊢ (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
3 | 1, 2 | eleq12d 2831 | . 2 ⊢ (𝑎 = ∅ → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ ∅ ∈ (toCaraSiga‘𝑀))) |
4 | unieq 4855 | . . 3 ⊢ (𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏) | |
5 | eqidd 2737 | . . 3 ⊢ (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
6 | 4, 5 | eleq12d 2831 | . 2 ⊢ (𝑎 = 𝑏 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝑏 ∈ (toCaraSiga‘𝑀))) |
7 | unieq 4855 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ∪ 𝑎 = ∪ (𝑏 ∪ {𝑥})) | |
8 | eqidd 2737 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
9 | 7, 8 | eleq12d 2831 | . 2 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
10 | unieq 4855 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
11 | eqidd 2737 | . . 3 ⊢ (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
12 | 10, 11 | eleq12d 2831 | . 2 ⊢ (𝑎 = 𝐴 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝐴 ∈ (toCaraSiga‘𝑀))) |
13 | uni0 4875 | . . . 4 ⊢ ∪ ∅ = ∅ | |
14 | difid 4310 | . . . 4 ⊢ (𝑂 ∖ 𝑂) = ∅ | |
15 | 13, 14 | eqtr4i 2767 | . . 3 ⊢ ∪ ∅ = (𝑂 ∖ 𝑂) |
16 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
17 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
18 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
19 | 16, 17, 18 | baselcarsg 32318 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
20 | 16, 17, 19 | difelcarsg 32322 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝑂) ∈ (toCaraSiga‘𝑀)) |
21 | 15, 20 | eqeltrid 2841 | . 2 ⊢ (𝜑 → ∪ ∅ ∈ (toCaraSiga‘𝑀)) |
22 | uniun 4870 | . . . . 5 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ ∪ {𝑥}) | |
23 | unisnv 4867 | . . . . . 6 ⊢ ∪ {𝑥} = 𝑥 | |
24 | 23 | uneq2i 4100 | . . . . 5 ⊢ (∪ 𝑏 ∪ ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
25 | 22, 24 | eqtri 2764 | . . . 4 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
26 | 16 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
27 | 17 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
28 | simpr 486 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) | |
29 | simpll 765 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑) | |
30 | carsgsiga.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
31 | 16, 17, 18, 30 | carsgsigalem 32327 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
32 | 29, 31 | syl3an1 1163 | . . . . 5 ⊢ ((((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
33 | fiunelcarsg.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) | |
34 | 33 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
35 | simplrr 776 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴 ∖ 𝑏)) | |
36 | 35 | eldifad 3904 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ 𝐴) |
37 | 34, 36 | sseldd 3927 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀)) |
38 | 26, 27, 28, 32, 37 | unelcarsg 32324 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → (∪ 𝑏 ∪ 𝑥) ∈ (toCaraSiga‘𝑀)) |
39 | 25, 38 | eqeltrid 2841 | . . 3 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)) |
40 | 39 | ex 414 | . 2 ⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪ 𝑏 ∈ (toCaraSiga‘𝑀) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
41 | fiunelcarsg.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
42 | 3, 6, 9, 12, 21, 40, 41 | findcard2d 8987 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ∪ cun 3890 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 {csn 4565 ∪ cuni 4844 class class class wbr 5081 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ωcom 7744 ≼ cdom 8762 Fincfn 8764 0cc0 10917 +∞cpnf 11052 ≤ cle 11056 +𝑒 cxad 12892 [,]cicc 13128 Σ*cesum 32040 toCaraSigaccarsg 32313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-ordt 17257 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-ps 18329 df-tsr 18330 df-plusf 18370 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-cring 19831 df-subrg 20067 df-abv 20122 df-lmod 20170 df-scaf 20171 df-sra 20479 df-rgmod 20480 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-tmd 23268 df-tgp 23269 df-tsms 23323 df-trg 23356 df-xms 23518 df-ms 23519 df-tms 23520 df-nm 23783 df-ngp 23784 df-nrg 23786 df-nlm 23787 df-ii 24085 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 df-esum 32041 df-carsg 32314 |
This theorem is referenced by: carsgclctunlem1 32329 carsgclctunlem2 32331 carsgclctunlem3 32332 |
Copyright terms: Public domain | W3C validator |