![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fiunelcarsg | Structured version Visualization version GIF version |
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
fiunelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fiunelcarsg.2 | ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
fiunelcarsg | ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . 3 ⊢ (𝑎 = ∅ → ∪ 𝑎 = ∪ ∅) | |
2 | eqidd 2741 | . . 3 ⊢ (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
3 | 1, 2 | eleq12d 2838 | . 2 ⊢ (𝑎 = ∅ → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ ∅ ∈ (toCaraSiga‘𝑀))) |
4 | unieq 4942 | . . 3 ⊢ (𝑎 = 𝑏 → ∪ 𝑎 = ∪ 𝑏) | |
5 | eqidd 2741 | . . 3 ⊢ (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
6 | 4, 5 | eleq12d 2838 | . 2 ⊢ (𝑎 = 𝑏 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝑏 ∈ (toCaraSiga‘𝑀))) |
7 | unieq 4942 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → ∪ 𝑎 = ∪ (𝑏 ∪ {𝑥})) | |
8 | eqidd 2741 | . . 3 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
9 | 7, 8 | eleq12d 2838 | . 2 ⊢ (𝑎 = (𝑏 ∪ {𝑥}) → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
10 | unieq 4942 | . . 3 ⊢ (𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴) | |
11 | eqidd 2741 | . . 3 ⊢ (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀)) | |
12 | 10, 11 | eleq12d 2838 | . 2 ⊢ (𝑎 = 𝐴 → (∪ 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∪ 𝐴 ∈ (toCaraSiga‘𝑀))) |
13 | uni0 4959 | . . . 4 ⊢ ∪ ∅ = ∅ | |
14 | difid 4398 | . . . 4 ⊢ (𝑂 ∖ 𝑂) = ∅ | |
15 | 13, 14 | eqtr4i 2771 | . . 3 ⊢ ∪ ∅ = (𝑂 ∖ 𝑂) |
16 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
17 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
18 | carsgsiga.1 | . . . . 5 ⊢ (𝜑 → (𝑀‘∅) = 0) | |
19 | 16, 17, 18 | baselcarsg 34271 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (toCaraSiga‘𝑀)) |
20 | 16, 17, 19 | difelcarsg 34275 | . . 3 ⊢ (𝜑 → (𝑂 ∖ 𝑂) ∈ (toCaraSiga‘𝑀)) |
21 | 15, 20 | eqeltrid 2848 | . 2 ⊢ (𝜑 → ∪ ∅ ∈ (toCaraSiga‘𝑀)) |
22 | uniun 4954 | . . . . 5 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ ∪ {𝑥}) | |
23 | unisnv 4951 | . . . . . 6 ⊢ ∪ {𝑥} = 𝑥 | |
24 | 23 | uneq2i 4188 | . . . . 5 ⊢ (∪ 𝑏 ∪ ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
25 | 22, 24 | eqtri 2768 | . . . 4 ⊢ ∪ (𝑏 ∪ {𝑥}) = (∪ 𝑏 ∪ 𝑥) |
26 | 16 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂 ∈ 𝑉) |
27 | 17 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
28 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) | |
29 | simpll 766 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑) | |
30 | carsgsiga.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
31 | 16, 17, 18, 30 | carsgsigalem 34280 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
32 | 29, 31 | syl3an1 1163 | . . . . 5 ⊢ ((((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
33 | fiunelcarsg.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) | |
34 | 33 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
35 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴 ∖ 𝑏)) | |
36 | 35 | eldifad 3988 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ 𝐴) |
37 | 34, 36 | sseldd 4009 | . . . . 5 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀)) |
38 | 26, 27, 28, 32, 37 | unelcarsg 34277 | . . . 4 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → (∪ 𝑏 ∪ 𝑥) ∈ (toCaraSiga‘𝑀)) |
39 | 25, 38 | eqeltrid 2848 | . . 3 ⊢ (((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) ∧ ∪ 𝑏 ∈ (toCaraSiga‘𝑀)) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)) |
40 | 39 | ex 412 | . 2 ⊢ ((𝜑 ∧ (𝑏 ⊆ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝑏))) → (∪ 𝑏 ∈ (toCaraSiga‘𝑀) → ∪ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))) |
41 | fiunelcarsg.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
42 | 3, 6, 9, 12, 21, 40, 41 | findcard2d 9232 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ (toCaraSiga‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 Fincfn 9003 0cc0 11184 +∞cpnf 11321 ≤ cle 11325 +𝑒 cxad 13173 [,]cicc 13410 Σ*cesum 33991 toCaraSigaccarsg 34266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-ordt 17561 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-abv 20832 df-lmod 20882 df-scaf 20883 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tmd 24101 df-tgp 24102 df-tsms 24156 df-trg 24189 df-xms 24351 df-ms 24352 df-tms 24353 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 df-ii 24922 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 df-esum 33992 df-carsg 34267 |
This theorem is referenced by: carsgclctunlem1 34282 carsgclctunlem2 34284 carsgclctunlem3 34285 |
Copyright terms: Public domain | W3C validator |