Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelcarsg Structured version   Visualization version   GIF version

Theorem fiunelcarsg 34150
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
fiunelcarsg (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem fiunelcarsg
Dummy variables 𝑎 𝑒 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4924 . . 3 (𝑎 = ∅ → 𝑎 = ∅)
2 eqidd 2727 . . 3 (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
31, 2eleq12d 2820 . 2 (𝑎 = ∅ → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∅ ∈ (toCaraSiga‘𝑀)))
4 unieq 4924 . . 3 (𝑎 = 𝑏 𝑎 = 𝑏)
5 eqidd 2727 . . 3 (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
64, 5eleq12d 2820 . 2 (𝑎 = 𝑏 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝑏 ∈ (toCaraSiga‘𝑀)))
7 unieq 4924 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
8 eqidd 2727 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
97, 8eleq12d 2820 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
10 unieq 4924 . . 3 (𝑎 = 𝐴 𝑎 = 𝐴)
11 eqidd 2727 . . 3 (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
1210, 11eleq12d 2820 . 2 (𝑎 = 𝐴 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ (toCaraSiga‘𝑀)))
13 uni0 4943 . . . 4 ∅ = ∅
14 difid 4375 . . . 4 (𝑂𝑂) = ∅
1513, 14eqtr4i 2757 . . 3 ∅ = (𝑂𝑂)
16 carsgval.1 . . . 4 (𝜑𝑂𝑉)
17 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
18 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
1916, 17, 18baselcarsg 34140 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
2016, 17, 19difelcarsg 34144 . . 3 (𝜑 → (𝑂𝑂) ∈ (toCaraSiga‘𝑀))
2115, 20eqeltrid 2830 . 2 (𝜑 ∅ ∈ (toCaraSiga‘𝑀))
22 uniun 4938 . . . . 5 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
23 unisnv 4935 . . . . . 6 {𝑥} = 𝑥
2423uneq2i 4160 . . . . 5 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
2522, 24eqtri 2754 . . . 4 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
2616ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
2717ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
28 simpr 483 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑏 ∈ (toCaraSiga‘𝑀))
29 simpll 765 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑)
30 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
3116, 17, 18, 30carsgsigalem 34149 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
3229, 31syl3an1 1160 . . . . 5 ((((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
33 fiunelcarsg.2 . . . . . . 7 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
3433ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
35 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴𝑏))
3635eldifad 3959 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥𝐴)
3734, 36sseldd 3980 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀))
3826, 27, 28, 32, 37unelcarsg 34146 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → ( 𝑏𝑥) ∈ (toCaraSiga‘𝑀))
3925, 38eqeltrid 2830 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))
4039ex 411 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 ∈ (toCaraSiga‘𝑀) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
41 fiunelcarsg.1 . 2 (𝜑𝐴 ∈ Fin)
423, 6, 9, 12, 21, 40, 41findcard2d 9204 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cdif 3944  cun 3945  wss 3947  c0 4325  𝒫 cpw 4607  {csn 4633   cuni 4913   class class class wbr 5153  wf 6550  cfv 6554  (class class class)co 7424  ωcom 7876  cdom 8972  Fincfn 8974  0cc0 11158  +∞cpnf 11295  cle 11299   +𝑒 cxad 13144  [,]cicc 13381  Σ*cesum 33860  toCaraSigaccarsg 34135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-ordt 17516  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-ps 18591  df-tsr 18592  df-plusf 18632  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-subrng 20528  df-subrg 20553  df-abv 20788  df-lmod 20838  df-scaf 20839  df-sra 21151  df-rgmod 21152  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-tmd 24067  df-tgp 24068  df-tsms 24122  df-trg 24155  df-xms 24317  df-ms 24318  df-tms 24319  df-nm 24582  df-ngp 24583  df-nrg 24585  df-nlm 24586  df-ii 24888  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-esum 33861  df-carsg 34136
This theorem is referenced by:  carsgclctunlem1  34151  carsgclctunlem2  34153  carsgclctunlem3  34154
  Copyright terms: Public domain W3C validator