MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   GIF version

Theorem 1stckgenlem 23545
Description: The one-point compactification of is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stckgen.2 (𝜑𝐹:ℕ⟶𝑋)
1stckgen.3 (𝜑𝐹(⇝𝑡𝐽)𝐴)
Assertion
Ref Expression
1stckgenlem (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)

Proof of Theorem 1stckgenlem
Dummy variables 𝑗 𝑘 𝑛 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2 ssun2 4171 . . . . . . . . 9 {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})
3 1stckgen.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 1stckgen.3 . . . . . . . . . . 11 (𝜑𝐹(⇝𝑡𝐽)𝐴)
5 lmcl 23289 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴𝑋)
63, 4, 5syl2anc 582 . . . . . . . . . 10 (𝜑𝐴𝑋)
7 snssg 4782 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
92, 8mpbiri 257 . . . . . . . 8 (𝜑𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
109adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
111, 10sseldd 3979 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 𝑢)
12 eluni2 4909 . . . . . 6 (𝐴 𝑢 ↔ ∃𝑤𝑢 𝐴𝑤)
1311, 12sylib 217 . . . . 5 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑤𝑢 𝐴𝑤)
14 nnuz 12911 . . . . . . 7 ℕ = (ℤ‘1)
15 simprr 771 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐴𝑤)
16 1zzd 12639 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 1 ∈ ℤ)
174ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐹(⇝𝑡𝐽)𝐴)
18 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢 ∈ 𝒫 𝐽)
1918elpwid 4606 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢𝐽)
20 simprl 769 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝑢)
2119, 20sseldd 3979 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝐽)
2214, 15, 16, 17, 21lmcvg 23254 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
23 imassrn 6072 . . . . . . . . . . . . 13 (𝐹 “ (1...𝑗)) ⊆ ran 𝐹
24 ssun1 4170 . . . . . . . . . . . . 13 ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴})
2523, 24sstri 3988 . . . . . . . . . . . 12 (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴})
26 id 22 . . . . . . . . . . . 12 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2725, 26sstrid 3990 . . . . . . . . . . 11 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (𝐹 “ (1...𝑗)) ⊆ 𝑢)
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℕ⟶𝑋)
2928frnd 6728 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹𝑋)
3023, 29sstrid 3990 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋)
31 resttopon 23153 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
323, 30, 31syl2anc 582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
33 topontop 22903 . . . . . . . . . . . . . . . 16 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
35 fzfid 13987 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑗) ∈ Fin)
3628ffund 6724 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝐹)
37 fz1ssnn 13580 . . . . . . . . . . . . . . . . . . . 20 (1...𝑗) ⊆ ℕ
3828fdmd 6730 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℕ)
3937, 38sseqtrrid 4032 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑗) ⊆ dom 𝐹)
40 fores 6817 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
4136, 39, 40syl2anc 582 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
42 fofi 9346 . . . . . . . . . . . . . . . . . 18 (((1...𝑗) ∈ Fin ∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin)
4335, 41, 42syl2anc 582 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin)
44 pwfi 9352 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
4543, 44sylib 217 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
46 restsspw 17441 . . . . . . . . . . . . . . . 16 (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))
47 ssfi 9204 . . . . . . . . . . . . . . . 16 ((𝒫 (𝐹 “ (1...𝑗)) ∈ Fin ∧ (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4845, 46, 47sylancl 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4934, 48elind 4192 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin))
50 fincmp 23385 . . . . . . . . . . . . . 14 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
52 topontop 22903 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
533, 52syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
54 toponuni 22904 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
553, 54syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
5630, 55sseqtrd 4019 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝐽)
57 eqid 2726 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
5857cmpsub 23392 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ 𝐽) → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
5953, 56, 58syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6051, 59mpbid 231 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6160r19.21bi 3239 . . . . . . . . . . 11 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6227, 61syl5 34 . . . . . . . . . 10 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6362impr 453 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
6463adantr 479 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
65 simprl 769 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin))
6665elin1d 4196 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ 𝒫 𝑢)
6766elpwid 4606 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠𝑢)
68 simprll 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → 𝑤𝑢)
6968adantr 479 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑤𝑢)
7069snssd 4808 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝑤} ⊆ 𝑢)
7167, 70unssd 4184 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢)
72 vex 3466 . . . . . . . . . . . 12 𝑢 ∈ V
7372elpw2 5344 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢)
7471, 73sylibr 233 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢)
7565elin2d 4197 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ Fin)
76 snfi 9073 . . . . . . . . . . 11 {𝑤} ∈ Fin
77 unfi 9202 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin)
7875, 76, 77sylancl 584 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin)
7974, 78elind 4192 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin))
8028ffnd 6721 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℕ)
8180ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐹 Fn ℕ)
82 simprrr 780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
8382adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
84 fveq2 6893 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2811 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑤 ↔ (𝐹𝑛) ∈ 𝑤))
8685rspccva 3606 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
8783, 86sylan 578 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
88 elun2 4175 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ 𝑤 → (𝐹𝑛) ∈ ( 𝑠𝑤))
8987, 88syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
9089adantlr 713 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
91 elnnuz 12912 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
9291anbi1i 622 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
93 elfzuzb 13543 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
9492, 93bitr4i 277 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ 𝑛 ∈ (1...𝑗))
95 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ 𝑠)
96 funimass4 6959 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9736, 39, 96syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9897ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9995, 98mpbid 231 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠)
10099r19.21bi 3239 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ 𝑠)
101 elun1 4174 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ 𝑠 → (𝐹𝑛) ∈ ( 𝑠𝑤))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
10394, 102sylan2b 592 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛))) → (𝐹𝑛) ∈ ( 𝑠𝑤))
104103anassrs 466 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
105 simprl 769 . . . . . . . . . . . . . . . 16 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ)
106105ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑗 ∈ ℕ)
107 nnz 12625 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
108 nnz 12625 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
109 uztric 12892 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
110107, 108, 109syl2an 594 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
111106, 110sylan 578 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
11290, 104, 111mpjaodan 956 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( 𝑠𝑤))
113112ralrimiva 3136 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤))
114 fnfvrnss 7127 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤)) → ran 𝐹 ⊆ ( 𝑠𝑤))
11581, 113, 114syl2anc 582 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ran 𝐹 ⊆ ( 𝑠𝑤))
116 elun2 4175 . . . . . . . . . . . . . 14 (𝐴𝑤𝐴 ∈ ( 𝑠𝑤))
117116ad2antlr 725 . . . . . . . . . . . . 13 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝐴 ∈ ( 𝑠𝑤))
118117ad2antlr 725 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐴 ∈ ( 𝑠𝑤))
119118snssd 4808 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝐴} ⊆ ( 𝑠𝑤))
120115, 119unssd 4184 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ( 𝑠𝑤))
121 uniun 4930 . . . . . . . . . . 11 (𝑠 ∪ {𝑤}) = ( 𝑠 {𝑤})
122 unisnv 4927 . . . . . . . . . . . 12 {𝑤} = 𝑤
123122uneq2i 4157 . . . . . . . . . . 11 ( 𝑠 {𝑤}) = ( 𝑠𝑤)
124121, 123eqtri 2754 . . . . . . . . . 10 (𝑠 ∪ {𝑤}) = ( 𝑠𝑤)
125120, 124sseqtrrdi 4030 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤}))
126 unieq 4916 . . . . . . . . . . 11 (𝑣 = (𝑠 ∪ {𝑤}) → 𝑣 = (𝑠 ∪ {𝑤}))
127126sseq2d 4011 . . . . . . . . . 10 (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})))
128127rspcev 3607 . . . . . . . . 9 (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
12979, 125, 128syl2anc 582 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13064, 129rexlimddv 3151 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
131130anassrs 466 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13222, 131rexlimddv 3151 . . . . 5 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13313, 132rexlimddv 3151 . . . 4 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
134133expr 455 . . 3 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
135134ralrimiva 3136 . 2 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
1366snssd 4808 . . . . 5 (𝜑 → {𝐴} ⊆ 𝑋)
13729, 136unssd 4184 . . . 4 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋)
138137, 55sseqtrd 4019 . . 3 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽)
13957cmpsub 23392 . . 3 ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽) → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
14053, 138, 139syl2anc 582 . 2 (𝜑 → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
141135, 140mpbird 256 1 (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wral 3051  wrex 3060  cun 3944  cin 3945  wss 3946  𝒫 cpw 4597  {csn 4623   cuni 4905   class class class wbr 5145  dom cdm 5674  ran crn 5675  cres 5676  cima 5677  Fun wfun 6540   Fn wfn 6541  wf 6542  ontowfo 6544  cfv 6546  (class class class)co 7416  Fincfn 8966  1c1 11150  cn 12258  cz 12604  cuz 12868  ...cfz 13532  t crest 17430  Topctop 22883  TopOnctopon 22900  𝑡clm 23218  Compccmp 23378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fi 9447  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-rest 17432  df-topgen 17453  df-top 22884  df-topon 22901  df-bases 22937  df-lm 23221  df-cmp 23379
This theorem is referenced by:  1stckgen  23546
  Copyright terms: Public domain W3C validator