Step | Hyp | Ref
| Expression |
1 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢) |
2 | | ssun2 4107 |
. . . . . . . . 9
⊢ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴}) |
3 | | 1stckgen.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | 1stckgen.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) |
5 | | lmcl 22448 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝐴) → 𝐴 ∈ 𝑋) |
6 | 3, 4, 5 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
7 | | snssg 4718 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴}))) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴}))) |
9 | 2, 8 | mpbiri 257 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (ran 𝐹 ∪ {𝐴})) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴})) |
11 | 1, 10 | sseldd 3922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → 𝐴 ∈ ∪ 𝑢) |
12 | | eluni2 4843 |
. . . . . 6
⊢ (𝐴 ∈ ∪ 𝑢
↔ ∃𝑤 ∈
𝑢 𝐴 ∈ 𝑤) |
13 | 11, 12 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → ∃𝑤 ∈ 𝑢 𝐴 ∈ 𝑤) |
14 | | nnuz 12621 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
15 | | simprr 770 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝐴 ∈ 𝑤) |
16 | | 1zzd 12351 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 1 ∈ ℤ) |
17 | 4 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝐹(⇝𝑡‘𝐽)𝐴) |
18 | | simplrl 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝑢 ∈ 𝒫 𝐽) |
19 | 18 | elpwid 4544 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝑢 ⊆ 𝐽) |
20 | | simprl 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝑤 ∈ 𝑢) |
21 | 19, 20 | sseldd 3922 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → 𝑤 ∈ 𝐽) |
22 | 14, 15, 16, 17, 21 | lmcvg 22413 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤) |
23 | | imassrn 5980 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ (1...𝑗)) ⊆ ran 𝐹 |
24 | | ssun1 4106 |
. . . . . . . . . . . . 13
⊢ ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴}) |
25 | 23, 24 | sstri 3930 |
. . . . . . . . . . . 12
⊢ (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴}) |
26 | | id 22 |
. . . . . . . . . . . 12
⊢ ((ran
𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢) |
27 | 25, 26 | sstrid 3932 |
. . . . . . . . . . 11
⊢ ((ran
𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑢) |
28 | | 1stckgen.2 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
29 | 28 | frnd 6608 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ran 𝐹 ⊆ 𝑋) |
30 | 23, 29 | sstrid 3932 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋) |
31 | | resttopon 22312 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗)))) |
32 | 3, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗)))) |
33 | | topontop 22062 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Top) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Top) |
35 | | fzfid 13693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝑗) ∈ Fin) |
36 | 28 | ffund 6604 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Fun 𝐹) |
37 | | fz1ssnn 13287 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑗) ⊆
ℕ |
38 | 28 | fdmd 6611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = ℕ) |
39 | 37, 38 | sseqtrrid 3974 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1...𝑗) ⊆ dom 𝐹) |
40 | | fores 6698 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) |
41 | 36, 39, 40 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) |
42 | | fofi 9105 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1...𝑗) ∈ Fin
∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin) |
43 | 35, 41, 42 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin) |
44 | | pwfi 8961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin) |
46 | | restsspw 17142 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ↾t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗)) |
47 | | ssfi 8956 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 (𝐹
“ (1...𝑗)) ∈ Fin
∧ (𝐽
↾t (𝐹
“ (1...𝑗))) ⊆
𝒫 (𝐹 “
(1...𝑗))) → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Fin) |
48 | 45, 46, 47 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Fin) |
49 | 34, 48 | elind 4128 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin)) |
50 | | fincmp 22544 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Comp) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Comp) |
52 | | topontop 22062 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
53 | 3, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ Top) |
54 | | toponuni 22063 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
55 | 3, 54 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
56 | 30, 55 | sseqtrd 3961 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 “ (1...𝑗)) ⊆ ∪ 𝐽) |
57 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝐽 =
∪ 𝐽 |
58 | 57 | cmpsub 22551 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝐽) → ((𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠))) |
59 | 53, 56, 58 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐽 ↾t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠))) |
60 | 51, 59 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) |
61 | 60 | r19.21bi 3134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) |
62 | 27, 61 | syl5 34 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) |
63 | 62 | impr 455 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠) |
64 | 63 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠) |
65 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin)) |
66 | 65 | elin1d 4132 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑠 ∈ 𝒫 𝑢) |
67 | 66 | elpwid 4544 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑠 ⊆ 𝑢) |
68 | | simprll 776 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) → 𝑤 ∈ 𝑢) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑤 ∈ 𝑢) |
70 | 69 | snssd 4742 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → {𝑤} ⊆ 𝑢) |
71 | 67, 70 | unssd 4120 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢) |
72 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V |
73 | 72 | elpw2 5269 |
. . . . . . . . . . 11
⊢ ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢) |
74 | 71, 73 | sylibr 233 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢) |
75 | 65 | elin2d 4133 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑠 ∈ Fin) |
76 | | snfi 8834 |
. . . . . . . . . . 11
⊢ {𝑤} ∈ Fin |
77 | | unfi 8955 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin) |
78 | 75, 76, 77 | sylancl 586 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin) |
79 | 74, 78 | elind 4128 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin)) |
80 | 28 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn ℕ) |
81 | 80 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝐹 Fn ℕ) |
82 | | simprrr 779 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤) |
83 | 82 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤) |
84 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
85 | 84 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ 𝑤 ↔ (𝐹‘𝑛) ∈ 𝑤)) |
86 | 85 | rspccva 3560 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ 𝑤) |
87 | 83, 86 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ 𝑤) |
88 | | elun2 4111 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) ∈ 𝑤 → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
90 | 89 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
91 | | elnnuz 12622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
92 | 91 | anbi1i 624 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑛)) ↔ (𝑛 ∈ (ℤ≥‘1)
∧ 𝑗 ∈
(ℤ≥‘𝑛))) |
93 | | elfzuzb 13250 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ≥‘1)
∧ 𝑗 ∈
(ℤ≥‘𝑛))) |
94 | 92, 93 | bitr4i 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑛)) ↔ 𝑛 ∈ (1...𝑗)) |
95 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠) |
96 | | funimass4 6834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Fun
𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹‘𝑛) ∈ ∪ 𝑠)) |
97 | 36, 39, 96 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹‘𝑛) ∈ ∪ 𝑠)) |
98 | 97 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹‘𝑛) ∈ ∪ 𝑠)) |
99 | 95, 98 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹‘𝑛) ∈ ∪ 𝑠) |
100 | 99 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹‘𝑛) ∈ ∪ 𝑠) |
101 | | elun1 4110 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ ∪ 𝑠 → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
103 | 94, 102 | sylan2b 594 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ≥‘𝑛))) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
104 | 103 | anassrs 468 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
105 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ) |
106 | 105 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝑗 ∈ ℕ) |
107 | | nnz 12342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
108 | | nnz 12342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
109 | | uztric 12606 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈
(ℤ≥‘𝑗) ∨ 𝑗 ∈ (ℤ≥‘𝑛))) |
110 | 107, 108,
109 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈
(ℤ≥‘𝑗) ∨ 𝑗 ∈ (ℤ≥‘𝑛))) |
111 | 106, 110 | sylan 580 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑗) ∨ 𝑗 ∈ (ℤ≥‘𝑛))) |
112 | 90, 104, 111 | mpjaodan 956 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
113 | 112 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) |
114 | | fnfvrnss 6994 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (∪ 𝑠 ∪ 𝑤)) → ran 𝐹 ⊆ (∪ 𝑠 ∪ 𝑤)) |
115 | 81, 113, 114 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ran 𝐹 ⊆ (∪ 𝑠 ∪ 𝑤)) |
116 | | elun2 4111 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑤 → 𝐴 ∈ (∪ 𝑠 ∪ 𝑤)) |
117 | 116 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤)) → 𝐴 ∈ (∪ 𝑠 ∪ 𝑤)) |
118 | 117 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → 𝐴 ∈ (∪ 𝑠 ∪ 𝑤)) |
119 | 118 | snssd 4742 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → {𝐴} ⊆ (∪
𝑠 ∪ 𝑤)) |
120 | 115, 119 | unssd 4120 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (∪
𝑠 ∪ 𝑤)) |
121 | | uniun 4864 |
. . . . . . . . . . 11
⊢ ∪ (𝑠
∪ {𝑤}) = (∪ 𝑠
∪ ∪ {𝑤}) |
122 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ V |
123 | 122 | unisn 4861 |
. . . . . . . . . . . 12
⊢ ∪ {𝑤}
= 𝑤 |
124 | 123 | uneq2i 4094 |
. . . . . . . . . . 11
⊢ (∪ 𝑠
∪ ∪ {𝑤}) = (∪ 𝑠 ∪ 𝑤) |
125 | 121, 124 | eqtri 2766 |
. . . . . . . . . 10
⊢ ∪ (𝑠
∪ {𝑤}) = (∪ 𝑠
∪ 𝑤) |
126 | 120, 125 | sseqtrrdi 3972 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ∪
(𝑠 ∪ {𝑤})) |
127 | | unieq 4850 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑠 ∪ {𝑤}) → ∪ 𝑣 = ∪
(𝑠 ∪ {𝑤})) |
128 | 127 | sseq2d 3953 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
(𝑠 ∪ {𝑤}))) |
129 | 128 | rspcev 3561 |
. . . . . . . . 9
⊢ (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
(𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
130 | 79, 126, 129 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ ∪ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
131 | 64, 130 | rexlimddv 3220 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ ((𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
132 | 131 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
133 | 22, 132 | rexlimddv 3220 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) ∧ (𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
134 | 13, 133 | rexlimddv 3220 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣) |
135 | 134 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣)) |
136 | 135 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣)) |
137 | 6 | snssd 4742 |
. . . . 5
⊢ (𝜑 → {𝐴} ⊆ 𝑋) |
138 | 29, 137 | unssd 4120 |
. . . 4
⊢ (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋) |
139 | 138, 55 | sseqtrd 3961 |
. . 3
⊢ (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝐽) |
140 | 57 | cmpsub 22551 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝐽) → ((𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣))) |
141 | 53, 139, 140 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ ∪
𝑣))) |
142 | 136, 141 | mpbird 256 |
1
⊢ (𝜑 → (𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp) |