MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   GIF version

Theorem 1stckgenlem 21868
Description: The one-point compactification of is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stckgen.2 (𝜑𝐹:ℕ⟶𝑋)
1stckgen.3 (𝜑𝐹(⇝𝑡𝐽)𝐴)
Assertion
Ref Expression
1stckgenlem (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)

Proof of Theorem 1stckgenlem
Dummy variables 𝑗 𝑘 𝑛 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 760 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2 ssun2 4040 . . . . . . . . 9 {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})
3 1stckgen.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 1stckgen.3 . . . . . . . . . . 11 (𝜑𝐹(⇝𝑡𝐽)𝐴)
5 lmcl 21612 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴𝑋)
63, 4, 5syl2anc 576 . . . . . . . . . 10 (𝜑𝐴𝑋)
7 snssg 4592 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
92, 8mpbiri 250 . . . . . . . 8 (𝜑𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
109adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
111, 10sseldd 3861 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 𝑢)
12 eluni2 4717 . . . . . 6 (𝐴 𝑢 ↔ ∃𝑤𝑢 𝐴𝑤)
1311, 12sylib 210 . . . . 5 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑤𝑢 𝐴𝑤)
14 nnuz 12098 . . . . . . 7 ℕ = (ℤ‘1)
15 simprr 760 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐴𝑤)
16 1zzd 11829 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 1 ∈ ℤ)
174ad2antrr 713 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐹(⇝𝑡𝐽)𝐴)
18 simplrl 764 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢 ∈ 𝒫 𝐽)
1918elpwid 4435 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢𝐽)
20 simprl 758 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝑢)
2119, 20sseldd 3861 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝐽)
2214, 15, 16, 17, 21lmcvg 21577 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
23 imassrn 5783 . . . . . . . . . . . . 13 (𝐹 “ (1...𝑗)) ⊆ ran 𝐹
24 ssun1 4039 . . . . . . . . . . . . 13 ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴})
2523, 24sstri 3869 . . . . . . . . . . . 12 (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴})
26 id 22 . . . . . . . . . . . 12 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2725, 26syl5ss 3871 . . . . . . . . . . 11 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (𝐹 “ (1...𝑗)) ⊆ 𝑢)
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℕ⟶𝑋)
2928frnd 6353 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹𝑋)
3023, 29syl5ss 3871 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋)
31 resttopon 21476 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
323, 30, 31syl2anc 576 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
33 topontop 21228 . . . . . . . . . . . . . . . 16 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
35 fzfid 13159 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑗) ∈ Fin)
3628ffund 6350 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝐹)
37 fz1ssnn 12757 . . . . . . . . . . . . . . . . . . . 20 (1...𝑗) ⊆ ℕ
3828fdmd 6355 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℕ)
3937, 38syl5sseqr 3912 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑗) ⊆ dom 𝐹)
40 fores 6431 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
4136, 39, 40syl2anc 576 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
42 fofi 8607 . . . . . . . . . . . . . . . . . 18 (((1...𝑗) ∈ Fin ∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin)
4335, 41, 42syl2anc 576 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin)
44 pwfi 8616 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
4543, 44sylib 210 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
46 restsspw 16564 . . . . . . . . . . . . . . . 16 (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))
47 ssfi 8535 . . . . . . . . . . . . . . . 16 ((𝒫 (𝐹 “ (1...𝑗)) ∈ Fin ∧ (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4845, 46, 47sylancl 577 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4934, 48elind 4061 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin))
50 fincmp 21708 . . . . . . . . . . . . . 14 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
52 topontop 21228 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
533, 52syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
54 toponuni 21229 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
553, 54syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
5630, 55sseqtrd 3899 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝐽)
57 eqid 2778 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
5857cmpsub 21715 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ 𝐽) → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
5953, 56, 58syl2anc 576 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6051, 59mpbid 224 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6160r19.21bi 3158 . . . . . . . . . . 11 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6227, 61syl5 34 . . . . . . . . . 10 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6362impr 447 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
6463adantr 473 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
65 simprl 758 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin))
6665elin1d 4065 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ 𝒫 𝑢)
6766elpwid 4435 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠𝑢)
68 simprll 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → 𝑤𝑢)
6968adantr 473 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑤𝑢)
7069snssd 4617 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝑤} ⊆ 𝑢)
7167, 70unssd 4052 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢)
72 vex 3418 . . . . . . . . . . . 12 𝑢 ∈ V
7372elpw2 5105 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢)
7471, 73sylibr 226 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢)
7565elin2d 4066 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ Fin)
76 snfi 8393 . . . . . . . . . . 11 {𝑤} ∈ Fin
77 unfi 8582 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin)
7875, 76, 77sylancl 577 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin)
7974, 78elind 4061 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin))
8028ffnd 6347 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℕ)
8180ad3antrrr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐹 Fn ℕ)
82 simprrr 769 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
8382adantr 473 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
84 fveq2 6501 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2850 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑤 ↔ (𝐹𝑛) ∈ 𝑤))
8685rspccva 3534 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
8783, 86sylan 572 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
88 elun2 4044 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ 𝑤 → (𝐹𝑛) ∈ ( 𝑠𝑤))
8987, 88syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
9089adantlr 702 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
91 elnnuz 12099 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
9291anbi1i 614 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
93 elfzuzb 12721 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
9492, 93bitr4i 270 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ 𝑛 ∈ (1...𝑗))
95 simprr 760 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ 𝑠)
96 funimass4 6562 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9736, 39, 96syl2anc 576 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9897ad3antrrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9995, 98mpbid 224 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠)
10099r19.21bi 3158 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ 𝑠)
101 elun1 4043 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ 𝑠 → (𝐹𝑛) ∈ ( 𝑠𝑤))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
10394, 102sylan2b 584 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛))) → (𝐹𝑛) ∈ ( 𝑠𝑤))
104103anassrs 460 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
105 simprl 758 . . . . . . . . . . . . . . . 16 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ)
106105ad2antlr 714 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑗 ∈ ℕ)
107 nnz 11820 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
108 nnz 11820 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
109 uztric 12083 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
110107, 108, 109syl2an 586 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
111106, 110sylan 572 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
11290, 104, 111mpjaodan 941 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( 𝑠𝑤))
113112ralrimiva 3132 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤))
114 fnfvrnss 6709 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤)) → ran 𝐹 ⊆ ( 𝑠𝑤))
11581, 113, 114syl2anc 576 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ran 𝐹 ⊆ ( 𝑠𝑤))
116 elun2 4044 . . . . . . . . . . . . . 14 (𝐴𝑤𝐴 ∈ ( 𝑠𝑤))
117116ad2antlr 714 . . . . . . . . . . . . 13 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝐴 ∈ ( 𝑠𝑤))
118117ad2antlr 714 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐴 ∈ ( 𝑠𝑤))
119118snssd 4617 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝐴} ⊆ ( 𝑠𝑤))
120115, 119unssd 4052 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ( 𝑠𝑤))
121 uniun 4732 . . . . . . . . . . 11 (𝑠 ∪ {𝑤}) = ( 𝑠 {𝑤})
122 vex 3418 . . . . . . . . . . . . 13 𝑤 ∈ V
123122unisn 4729 . . . . . . . . . . . 12 {𝑤} = 𝑤
124123uneq2i 4027 . . . . . . . . . . 11 ( 𝑠 {𝑤}) = ( 𝑠𝑤)
125121, 124eqtri 2802 . . . . . . . . . 10 (𝑠 ∪ {𝑤}) = ( 𝑠𝑤)
126120, 125syl6sseqr 3910 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤}))
127 unieq 4721 . . . . . . . . . . 11 (𝑣 = (𝑠 ∪ {𝑤}) → 𝑣 = (𝑠 ∪ {𝑤}))
128127sseq2d 3891 . . . . . . . . . 10 (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})))
129128rspcev 3535 . . . . . . . . 9 (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13079, 126, 129syl2anc 576 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13164, 130rexlimddv 3236 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
132131anassrs 460 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13322, 132rexlimddv 3236 . . . . 5 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13413, 133rexlimddv 3236 . . . 4 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
135134expr 449 . . 3 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
136135ralrimiva 3132 . 2 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
1376snssd 4617 . . . . 5 (𝜑 → {𝐴} ⊆ 𝑋)
13829, 137unssd 4052 . . . 4 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋)
139138, 55sseqtrd 3899 . . 3 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽)
14057cmpsub 21715 . . 3 ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽) → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
14153, 139, 140syl2anc 576 . 2 (𝜑 → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
142136, 141mpbird 249 1 (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wral 3088  wrex 3089  cun 3829  cin 3830  wss 3831  𝒫 cpw 4423  {csn 4442   cuni 4713   class class class wbr 4930  dom cdm 5408  ran crn 5409  cres 5410  cima 5411  Fun wfun 6184   Fn wfn 6185  wf 6186  ontowfo 6188  cfv 6190  (class class class)co 6978  Fincfn 8308  1c1 10338  cn 11441  cz 11796  cuz 12061  ...cfz 12711  t crest 16553  Topctop 21208  TopOnctopon 21225  𝑡clm 21541  Compccmp 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fi 8672  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-rest 16555  df-topgen 16576  df-top 21209  df-topon 21226  df-bases 21261  df-lm 21544  df-cmp 21702
This theorem is referenced by:  1stckgen  21869
  Copyright terms: Public domain W3C validator