MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   GIF version

Theorem 1stckgenlem 22784
Description: The one-point compactification of is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stckgen.2 (𝜑𝐹:ℕ⟶𝑋)
1stckgen.3 (𝜑𝐹(⇝𝑡𝐽)𝐴)
Assertion
Ref Expression
1stckgenlem (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)

Proof of Theorem 1stckgenlem
Dummy variables 𝑗 𝑘 𝑛 𝑠 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2 ssun2 4117 . . . . . . . . 9 {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})
3 1stckgen.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 1stckgen.3 . . . . . . . . . . 11 (𝜑𝐹(⇝𝑡𝐽)𝐴)
5 lmcl 22528 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝐴) → 𝐴𝑋)
63, 4, 5syl2anc 584 . . . . . . . . . 10 (𝜑𝐴𝑋)
7 snssg 4728 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
86, 7syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (ran 𝐹 ∪ {𝐴}) ↔ {𝐴} ⊆ (ran 𝐹 ∪ {𝐴})))
92, 8mpbiri 257 . . . . . . . 8 (𝜑𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
109adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 ∈ (ran 𝐹 ∪ {𝐴}))
111, 10sseldd 3931 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → 𝐴 𝑢)
12 eluni2 4853 . . . . . 6 (𝐴 𝑢 ↔ ∃𝑤𝑢 𝐴𝑤)
1311, 12sylib 217 . . . . 5 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑤𝑢 𝐴𝑤)
14 nnuz 12700 . . . . . . 7 ℕ = (ℤ‘1)
15 simprr 770 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐴𝑤)
16 1zzd 12430 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 1 ∈ ℤ)
174ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝐹(⇝𝑡𝐽)𝐴)
18 simplrl 774 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢 ∈ 𝒫 𝐽)
1918elpwid 4553 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑢𝐽)
20 simprl 768 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝑢)
2119, 20sseldd 3931 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → 𝑤𝐽)
2214, 15, 16, 17, 21lmcvg 22493 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
23 imassrn 5997 . . . . . . . . . . . . 13 (𝐹 “ (1...𝑗)) ⊆ ran 𝐹
24 ssun1 4116 . . . . . . . . . . . . 13 ran 𝐹 ⊆ (ran 𝐹 ∪ {𝐴})
2523, 24sstri 3939 . . . . . . . . . . . 12 (𝐹 “ (1...𝑗)) ⊆ (ran 𝐹 ∪ {𝐴})
26 id 22 . . . . . . . . . . . 12 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)
2725, 26sstrid 3941 . . . . . . . . . . 11 ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → (𝐹 “ (1...𝑗)) ⊆ 𝑢)
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℕ⟶𝑋)
2928frnd 6645 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran 𝐹𝑋)
3023, 29sstrid 3941 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝑋)
31 resttopon 22392 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑋) → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
323, 30, 31syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))))
33 topontop 22142 . . . . . . . . . . . . . . . 16 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (TopOn‘(𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Top)
35 fzfid 13772 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑗) ∈ Fin)
3628ffund 6641 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Fun 𝐹)
37 fz1ssnn 13366 . . . . . . . . . . . . . . . . . . . 20 (1...𝑗) ⊆ ℕ
3828fdmd 6648 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = ℕ)
3937, 38sseqtrrid 3983 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...𝑗) ⊆ dom 𝐹)
40 fores 6735 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
4136, 39, 40syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗)))
42 fofi 9181 . . . . . . . . . . . . . . . . . 18 (((1...𝑗) ∈ Fin ∧ (𝐹 ↾ (1...𝑗)):(1...𝑗)–onto→(𝐹 “ (1...𝑗))) → (𝐹 “ (1...𝑗)) ∈ Fin)
4335, 41, 42syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ (1...𝑗)) ∈ Fin)
44 pwfi 9021 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (1...𝑗)) ∈ Fin ↔ 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
4543, 44sylib 217 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 (𝐹 “ (1...𝑗)) ∈ Fin)
46 restsspw 17216 . . . . . . . . . . . . . . . 16 (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))
47 ssfi 9016 . . . . . . . . . . . . . . . 16 ((𝒫 (𝐹 “ (1...𝑗)) ∈ Fin ∧ (𝐽t (𝐹 “ (1...𝑗))) ⊆ 𝒫 (𝐹 “ (1...𝑗))) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4845, 46, 47sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Fin)
4934, 48elind 4138 . . . . . . . . . . . . . 14 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin))
50 fincmp 22624 . . . . . . . . . . . . . 14 ((𝐽t (𝐹 “ (1...𝑗))) ∈ (Top ∩ Fin) → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽t (𝐹 “ (1...𝑗))) ∈ Comp)
52 topontop 22142 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
533, 52syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
54 toponuni 22143 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
553, 54syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑋 = 𝐽)
5630, 55sseqtrd 3970 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (1...𝑗)) ⊆ 𝐽)
57 eqid 2736 . . . . . . . . . . . . . . 15 𝐽 = 𝐽
5857cmpsub 22631 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ (𝐹 “ (1...𝑗)) ⊆ 𝐽) → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
5953, 56, 58syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐽t (𝐹 “ (1...𝑗))) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)))
6051, 59mpbid 231 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6160r19.21bi 3230 . . . . . . . . . . 11 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((𝐹 “ (1...𝑗)) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6227, 61syl5 34 . . . . . . . . . 10 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠))
6362impr 455 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
6463adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑠 ∈ (𝒫 𝑢 ∩ Fin)(𝐹 “ (1...𝑗)) ⊆ 𝑠)
65 simprl 768 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ (𝒫 𝑢 ∩ Fin))
6665elin1d 4142 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ 𝒫 𝑢)
6766elpwid 4553 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠𝑢)
68 simprll 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → 𝑤𝑢)
6968adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑤𝑢)
7069snssd 4753 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝑤} ⊆ 𝑢)
7167, 70unssd 4130 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ⊆ 𝑢)
72 vex 3444 . . . . . . . . . . . 12 𝑢 ∈ V
7372elpw2 5283 . . . . . . . . . . 11 ((𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢 ↔ (𝑠 ∪ {𝑤}) ⊆ 𝑢)
7471, 73sylibr 233 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ 𝒫 𝑢)
7565elin2d 4143 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑠 ∈ Fin)
76 snfi 8887 . . . . . . . . . . 11 {𝑤} ∈ Fin
77 unfi 9015 . . . . . . . . . . 11 ((𝑠 ∈ Fin ∧ {𝑤} ∈ Fin) → (𝑠 ∪ {𝑤}) ∈ Fin)
7875, 76, 77sylancl 586 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ Fin)
7974, 78elind 4138 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin))
8028ffnd 6638 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℕ)
8180ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐹 Fn ℕ)
82 simprrr 779 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
8382adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)
84 fveq2 6811 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8584eleq1d 2821 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ 𝑤 ↔ (𝐹𝑛) ∈ 𝑤))
8685rspccva 3568 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
8783, 86sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ 𝑤)
88 elun2 4121 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ 𝑤 → (𝐹𝑛) ∈ ( 𝑠𝑤))
8987, 88syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
9089adantlr 712 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
91 elnnuz 12701 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
9291anbi1i 624 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
93 elfzuzb 13329 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑗) ↔ (𝑛 ∈ (ℤ‘1) ∧ 𝑗 ∈ (ℤ𝑛)))
9492, 93bitr4i 277 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛)) ↔ 𝑛 ∈ (1...𝑗))
95 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (𝐹 “ (1...𝑗)) ⊆ 𝑠)
96 funimass4 6873 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝐹 ∧ (1...𝑗) ⊆ dom 𝐹) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9736, 39, 96syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9897ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ((𝐹 “ (1...𝑗)) ⊆ 𝑠 ↔ ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠))
9995, 98mpbid 231 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ (1...𝑗)(𝐹𝑛) ∈ 𝑠)
10099r19.21bi 3230 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ 𝑠)
101 elun1 4120 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ 𝑠 → (𝐹𝑛) ∈ ( 𝑠𝑤))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ (1...𝑗)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
10394, 102sylan2b 594 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ (𝑛 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑛))) → (𝐹𝑛) ∈ ( 𝑠𝑤))
104103anassrs 468 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ( 𝑠𝑤))
105 simprl 768 . . . . . . . . . . . . . . . 16 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝑗 ∈ ℕ)
106105ad2antlr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝑗 ∈ ℕ)
107 nnz 12421 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
108 nnz 12421 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
109 uztric 12685 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
110107, 108, 109syl2an 596 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
111106, 110sylan 580 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝑛 ∈ (ℤ𝑗) ∨ 𝑗 ∈ (ℤ𝑛)))
11290, 104, 111mpjaodan 956 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( 𝑠𝑤))
113112ralrimiva 3139 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤))
114 fnfvrnss 7033 . . . . . . . . . . . 12 ((𝐹 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ ( 𝑠𝑤)) → ran 𝐹 ⊆ ( 𝑠𝑤))
11581, 113, 114syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ran 𝐹 ⊆ ( 𝑠𝑤))
116 elun2 4121 . . . . . . . . . . . . . 14 (𝐴𝑤𝐴 ∈ ( 𝑠𝑤))
117116ad2antlr 724 . . . . . . . . . . . . 13 (((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → 𝐴 ∈ ( 𝑠𝑤))
118117ad2antlr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → 𝐴 ∈ ( 𝑠𝑤))
119118snssd 4753 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → {𝐴} ⊆ ( 𝑠𝑤))
120115, 119unssd 4130 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ ( 𝑠𝑤))
121 uniun 4875 . . . . . . . . . . 11 (𝑠 ∪ {𝑤}) = ( 𝑠 {𝑤})
122 unisnv 4872 . . . . . . . . . . . 12 {𝑤} = 𝑤
123122uneq2i 4104 . . . . . . . . . . 11 ( 𝑠 {𝑤}) = ( 𝑠𝑤)
124121, 123eqtri 2764 . . . . . . . . . 10 (𝑠 ∪ {𝑤}) = ( 𝑠𝑤)
125120, 124sseqtrrdi 3981 . . . . . . . . 9 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤}))
126 unieq 4860 . . . . . . . . . . 11 (𝑣 = (𝑠 ∪ {𝑤}) → 𝑣 = (𝑠 ∪ {𝑤}))
127126sseq2d 3962 . . . . . . . . . 10 (𝑣 = (𝑠 ∪ {𝑤}) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑣 ↔ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})))
128127rspcev 3569 . . . . . . . . 9 (((𝑠 ∪ {𝑤}) ∈ (𝒫 𝑢 ∩ Fin) ∧ (ran 𝐹 ∪ {𝐴}) ⊆ (𝑠 ∪ {𝑤})) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
12979, 125, 128syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) ∧ (𝑠 ∈ (𝒫 𝑢 ∩ Fin) ∧ (𝐹 “ (1...𝑗)) ⊆ 𝑠)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13064, 129rexlimddv 3154 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ ((𝑤𝑢𝐴𝑤) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤))) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
131130anassrs 468 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13222, 131rexlimddv 3154 . . . . 5 (((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) ∧ (𝑤𝑢𝐴𝑤)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
13313, 132rexlimddv 3154 . . . 4 ((𝜑 ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝑢)) → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)
134133expr 457 . . 3 ((𝜑𝑢 ∈ 𝒫 𝐽) → ((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
135134ralrimiva 3139 . 2 (𝜑 → ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣))
1366snssd 4753 . . . . 5 (𝜑 → {𝐴} ⊆ 𝑋)
13729, 136unssd 4130 . . . 4 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝑋)
138137, 55sseqtrd 3970 . . 3 (𝜑 → (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽)
13957cmpsub 22631 . . 3 ((𝐽 ∈ Top ∧ (ran 𝐹 ∪ {𝐴}) ⊆ 𝐽) → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
14053, 138, 139syl2anc 584 . 2 (𝜑 → ((𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((ran 𝐹 ∪ {𝐴}) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(ran 𝐹 ∪ {𝐴}) ⊆ 𝑣)))
141135, 140mpbird 256 1 (𝜑 → (𝐽t (ran 𝐹 ∪ {𝐴})) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  wrex 3070  cun 3894  cin 3895  wss 3896  𝒫 cpw 4544  {csn 4570   cuni 4849   class class class wbr 5086  dom cdm 5607  ran crn 5608  cres 5609  cima 5610  Fun wfun 6459   Fn wfn 6460  wf 6461  ontowfo 6463  cfv 6465  (class class class)co 7316  Fincfn 8782  1c1 10951  cn 12052  cz 12398  cuz 12661  ...cfz 13318  t crest 17205  Topctop 22122  TopOnctopon 22139  𝑡clm 22457  Compccmp 22617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fi 9246  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-rest 17207  df-topgen 17228  df-top 22123  df-topon 22140  df-bases 22176  df-lm 22460  df-cmp 22618
This theorem is referenced by:  1stckgen  22785
  Copyright terms: Public domain W3C validator