| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version | ||
| Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| fobigcup | ⊢ Bigcup :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7668 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
| 2 | 1 | rgen 3049 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
| 3 | dfbigcup2 35933 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
| 4 | 3 | mptfng 6615 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ Bigcup Fn V |
| 6 | 3 | rnmpt 5892 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | vsnex 5367 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 9 | unisnv 4874 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
| 10 | 9 | eqcomi 2740 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
| 11 | unieq 4865 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
| 12 | 11 | rspceeqv 3595 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
| 14 | 7, 13 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 15 | 14 | eqabi 2866 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 16 | 6, 15 | eqtr4i 2757 | . 2 ⊢ ran Bigcup = V |
| 17 | df-fo 6482 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
| 18 | 5, 16, 17 | mpbir2an 711 | 1 ⊢ Bigcup :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 {csn 4571 ∪ cuni 4854 ran crn 5612 Fn wfn 6471 –onto→wfo 6474 Bigcup cbigcup 35868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4198 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-1st 7916 df-2nd 7917 df-txp 35888 df-bigcup 35892 |
| This theorem is referenced by: fnbigcup 35935 |
| Copyright terms: Public domain | W3C validator |