![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version |
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fobigcup | ⊢ Bigcup :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
2 | 1 | rgen 3069 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
3 | dfbigcup2 35863 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
4 | 3 | mptfng 6719 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
5 | 2, 4 | mpbi 230 | . 2 ⊢ Bigcup Fn V |
6 | 3 | rnmpt 5980 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
7 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | vsnex 5449 | . . . . . 6 ⊢ {𝑦} ∈ V | |
9 | unisnv 4951 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
10 | 9 | eqcomi 2749 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
11 | unieq 4942 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
12 | 11 | rspceeqv 3658 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
13 | 8, 10, 12 | mp2an 691 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
14 | 7, 13 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
15 | 14 | eqabi 2880 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
16 | 6, 15 | eqtr4i 2771 | . 2 ⊢ ran Bigcup = V |
17 | df-fo 6579 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
18 | 5, 16, 17 | mpbir2an 710 | 1 ⊢ Bigcup :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 {csn 4648 ∪ cuni 4931 ran crn 5701 Fn wfn 6568 –onto→wfo 6571 Bigcup cbigcup 35798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1st 8030 df-2nd 8031 df-txp 35818 df-bigcup 35822 |
This theorem is referenced by: fnbigcup 35865 |
Copyright terms: Public domain | W3C validator |