| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version | ||
| Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| fobigcup | ⊢ Bigcup :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7743 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
| 2 | 1 | rgen 3052 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
| 3 | dfbigcup2 35841 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
| 4 | 3 | mptfng 6688 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ Bigcup Fn V |
| 6 | 3 | rnmpt 5950 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 7 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | vsnex 5416 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 9 | unisnv 4909 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
| 10 | 9 | eqcomi 2743 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
| 11 | unieq 4900 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
| 12 | 11 | rspceeqv 3629 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
| 14 | 7, 13 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 15 | 14 | eqabi 2869 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 16 | 6, 15 | eqtr4i 2760 | . 2 ⊢ ran Bigcup = V |
| 17 | df-fo 6548 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
| 18 | 5, 16, 17 | mpbir2an 711 | 1 ⊢ Bigcup :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∃wrex 3059 Vcvv 3464 {csn 4608 ∪ cuni 4889 ran crn 5668 Fn wfn 6537 –onto→wfo 6540 Bigcup cbigcup 35776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-symdif 4235 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-eprel 5566 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7997 df-2nd 7998 df-txp 35796 df-bigcup 35800 |
| This theorem is referenced by: fnbigcup 35843 |
| Copyright terms: Public domain | W3C validator |