Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 35847
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7729 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3052 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 35846 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6674 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 230 . 2 Bigcup Fn V
63rnmpt 5935 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3461 . . . . 5 𝑦 ∈ V
8 vsnex 5402 . . . . . 6 {𝑦} ∈ V
9 unisnv 4901 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2743 . . . . . 6 𝑦 = {𝑦}
11 unieq 4892 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3622 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514eqabi 2869 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2760 . 2 ran Bigcup = V
17 df-fo 6534 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 711 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3457  {csn 4599   cuni 4881  ran crn 5653   Fn wfn 6523  ontowfo 6526   Bigcup cbigcup 35781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-symdif 4226  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-eprel 5551  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fo 6534  df-fv 6536  df-1st 7983  df-2nd 7984  df-txp 35801  df-bigcup 35805
This theorem is referenced by:  fnbigcup  35848
  Copyright terms: Public domain W3C validator