| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version | ||
| Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| fobigcup | ⊢ Bigcup :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7696 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
| 2 | 1 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
| 3 | dfbigcup2 35860 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
| 4 | 3 | mptfng 6639 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
| 5 | 2, 4 | mpbi 230 | . 2 ⊢ Bigcup Fn V |
| 6 | 3 | rnmpt 5910 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 7 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | vsnex 5384 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 9 | unisnv 4887 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
| 10 | 9 | eqcomi 2738 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
| 11 | unieq 4878 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
| 12 | 11 | rspceeqv 3608 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 13 | 8, 10, 12 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
| 14 | 7, 13 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
| 15 | 14 | eqabi 2863 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
| 16 | 6, 15 | eqtr4i 2755 | . 2 ⊢ ran Bigcup = V |
| 17 | df-fo 6505 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
| 18 | 5, 16, 17 | mpbir2an 711 | 1 ⊢ Bigcup :V–onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3444 {csn 4585 ∪ cuni 4867 ran crn 5632 Fn wfn 6494 –onto→wfo 6497 Bigcup cbigcup 35795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-symdif 4212 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35815 df-bigcup 35819 |
| This theorem is referenced by: fnbigcup 35862 |
| Copyright terms: Public domain | W3C validator |