Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 36014
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7682 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3050 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 36013 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6628 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 230 . 2 Bigcup Fn V
63rnmpt 5903 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3441 . . . . 5 𝑦 ∈ V
8 vsnex 5376 . . . . . 6 {𝑦} ∈ V
9 unisnv 4880 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2742 . . . . . 6 𝑦 = {𝑦}
11 unieq 4871 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3596 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514eqabi 2868 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2759 . 2 ran Bigcup = V
17 df-fo 6495 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 711 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  {csn 4577   cuni 4860  ran crn 5622   Fn wfn 6484  ontowfo 6487   Bigcup cbigcup 35948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-txp 35968  df-bigcup 35972
This theorem is referenced by:  fnbigcup  36015
  Copyright terms: Public domain W3C validator