Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 35876
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7680 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3046 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 35875 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6625 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 230 . 2 Bigcup Fn V
63rnmpt 5903 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3442 . . . . 5 𝑦 ∈ V
8 vsnex 5376 . . . . . 6 {𝑦} ∈ V
9 unisnv 4881 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2738 . . . . . 6 𝑦 = {𝑦}
11 unieq 4872 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3602 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514eqabi 2863 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2755 . 2 ran Bigcup = V
17 df-fo 6492 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 711 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  {csn 4579   cuni 4861  ran crn 5624   Fn wfn 6481  ontowfo 6484   Bigcup cbigcup 35810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35830  df-bigcup 35834
This theorem is referenced by:  fnbigcup  35877
  Copyright terms: Public domain W3C validator