![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version |
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fobigcup | ⊢ Bigcup :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7726 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
2 | 1 | rgen 3063 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
3 | dfbigcup2 34859 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
4 | 3 | mptfng 6686 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
5 | 2, 4 | mpbi 229 | . 2 ⊢ Bigcup Fn V |
6 | 3 | rnmpt 5952 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
7 | vex 3478 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | vsnex 5428 | . . . . . 6 ⊢ {𝑦} ∈ V | |
9 | unisnv 4930 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
10 | 9 | eqcomi 2741 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
11 | unieq 4918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
12 | 11 | rspceeqv 3632 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
13 | 8, 10, 12 | mp2an 690 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
14 | 7, 13 | 2th 263 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
15 | 14 | eqabi 2869 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
16 | 6, 15 | eqtr4i 2763 | . 2 ⊢ ran Bigcup = V |
17 | df-fo 6546 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
18 | 5, 16, 17 | mpbir2an 709 | 1 ⊢ Bigcup :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 Vcvv 3474 {csn 4627 ∪ cuni 4907 ran crn 5676 Fn wfn 6535 –onto→wfo 6538 Bigcup cbigcup 34794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-symdif 4241 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-eprel 5579 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-1st 7971 df-2nd 7972 df-txp 34814 df-bigcup 34818 |
This theorem is referenced by: fnbigcup 34861 |
Copyright terms: Public domain | W3C validator |