![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fobigcup | Structured version Visualization version GIF version |
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fobigcup | ⊢ Bigcup :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7759 | . . . 4 ⊢ (𝑥 ∈ V → ∪ 𝑥 ∈ V) | |
2 | 1 | rgen 3061 | . . 3 ⊢ ∀𝑥 ∈ V ∪ 𝑥 ∈ V |
3 | dfbigcup2 35881 | . . . 4 ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | |
4 | 3 | mptfng 6708 | . . 3 ⊢ (∀𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V) |
5 | 2, 4 | mpbi 230 | . 2 ⊢ Bigcup Fn V |
6 | 3 | rnmpt 5971 | . . 3 ⊢ ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
7 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | vsnex 5440 | . . . . . 6 ⊢ {𝑦} ∈ V | |
9 | unisnv 4932 | . . . . . . 7 ⊢ ∪ {𝑦} = 𝑦 | |
10 | 9 | eqcomi 2744 | . . . . . 6 ⊢ 𝑦 = ∪ {𝑦} |
11 | unieq 4923 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ∪ 𝑥 = ∪ {𝑦}) | |
12 | 11 | rspceeqv 3645 | . . . . . 6 ⊢ (({𝑦} ∈ V ∧ 𝑦 = ∪ {𝑦}) → ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
13 | 8, 10, 12 | mp2an 692 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥 |
14 | 7, 13 | 2th 264 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥) |
15 | 14 | eqabi 2875 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ 𝑥} |
16 | 6, 15 | eqtr4i 2766 | . 2 ⊢ ran Bigcup = V |
17 | df-fo 6569 | . 2 ⊢ ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V)) | |
18 | 5, 16, 17 | mpbir2an 711 | 1 ⊢ Bigcup :V–onto→V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 Vcvv 3478 {csn 4631 ∪ cuni 4912 ran crn 5690 Fn wfn 6558 –onto→wfo 6561 Bigcup cbigcup 35816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 df-bigcup 35840 |
This theorem is referenced by: fnbigcup 35883 |
Copyright terms: Public domain | W3C validator |