Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 35842
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7743 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3052 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 35841 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6688 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 230 . 2 Bigcup Fn V
63rnmpt 5950 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3468 . . . . 5 𝑦 ∈ V
8 vsnex 5416 . . . . . 6 {𝑦} ∈ V
9 unisnv 4909 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2743 . . . . . 6 𝑦 = {𝑦}
11 unieq 4900 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3629 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514eqabi 2869 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2760 . 2 ran Bigcup = V
17 df-fo 6548 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 711 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3464  {csn 4608   cuni 4889  ran crn 5668   Fn wfn 6537  ontowfo 6540   Bigcup cbigcup 35776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-symdif 4235  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-eprel 5566  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7997  df-2nd 7998  df-txp 35796  df-bigcup 35800
This theorem is referenced by:  fnbigcup  35843
  Copyright terms: Public domain W3C validator