Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 34129
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7571 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3073 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 34128 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6556 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 229 . 2 Bigcup Fn V
63rnmpt 5853 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3426 . . . . 5 𝑦 ∈ V
8 snex 5349 . . . . . 6 {𝑦} ∈ V
97unisn 4858 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2747 . . . . . 6 𝑦 = {𝑦}
11 unieq 4847 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3567 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 688 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 263 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514abbi2i 2878 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2769 . 2 ran Bigcup = V
17 df-fo 6424 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 707 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  {csn 4558   cuni 4836  ran crn 5581   Fn wfn 6413  ontowfo 6416   Bigcup cbigcup 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-bigcup 34087
This theorem is referenced by:  fnbigcup  34130
  Copyright terms: Public domain W3C validator