Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fobigcup Structured version   Visualization version   GIF version

Theorem fobigcup 35934
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
fobigcup Bigcup :V–onto→V

Proof of Theorem fobigcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7668 . . . 4 (𝑥 ∈ V → 𝑥 ∈ V)
21rgen 3049 . . 3 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 35933 . . . 4 Bigcup = (𝑥 ∈ V ↦ 𝑥)
43mptfng 6615 . . 3 (∀𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V)
52, 4mpbi 230 . 2 Bigcup Fn V
63rnmpt 5892 . . 3 ran Bigcup = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
7 vex 3440 . . . . 5 𝑦 ∈ V
8 vsnex 5367 . . . . . 6 {𝑦} ∈ V
9 unisnv 4874 . . . . . . 7 {𝑦} = 𝑦
109eqcomi 2740 . . . . . 6 𝑦 = {𝑦}
11 unieq 4865 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 = {𝑦})
1211rspceeqv 3595 . . . . . 6 (({𝑦} ∈ V ∧ 𝑦 = {𝑦}) → ∃𝑥 ∈ V 𝑦 = 𝑥)
138, 10, 12mp2an 692 . . . . 5 𝑥 ∈ V 𝑦 = 𝑥
147, 132th 264 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = 𝑥)
1514eqabi 2866 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = 𝑥}
166, 15eqtr4i 2757 . 2 ran Bigcup = V
17 df-fo 6482 . 2 ( Bigcup :V–onto→V ↔ ( Bigcup Fn V ∧ ran Bigcup = V))
185, 16, 17mpbir2an 711 1 Bigcup :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  {csn 4571   cuni 4854  ran crn 5612   Fn wfn 6471  ontowfo 6474   Bigcup cbigcup 35868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-symdif 4198  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-eprel 5511  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-1st 7916  df-2nd 7917  df-txp 35888  df-bigcup 35892
This theorem is referenced by:  fnbigcup  35935
  Copyright terms: Public domain W3C validator