Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem3 Structured version   Visualization version   GIF version

Theorem upciclem3 49141
Description: Lemma for upciclem4 49142. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upciclem3.od · = (comp‘𝐷)
upciclem3.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem3.l (𝜑𝐿 ∈ (𝑌𝐻𝑋))
upciclem3.mn (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
upciclem3.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem3 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Distinct variable groups:   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑓,𝐺,𝑘,𝑤   𝑓,𝐻,𝑘,𝑤   𝑓,𝐽,𝑤   𝑓,𝑀,𝑘,𝑤   𝑓,𝑂,𝑘,𝑤   𝑓,𝑋,𝑘,𝑤   𝑓,𝑍,𝑘,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑤,𝑓,𝑘)   𝐷(𝑤,𝑓,𝑘)   · (𝑤,𝑓,𝑘)   𝐸(𝑤,𝑓,𝑘)   𝐽(𝑘)   𝐾(𝑤,𝑓,𝑘)   𝐿(𝑤,𝑓,𝑘)   𝑁(𝑤,𝑓,𝑘)   𝑌(𝑤,𝑓,𝑘)

Proof of Theorem upciclem3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6860 . . . 4 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾)))
21oveq1d 7404 . . 3 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
32eqeq2d 2741 . 2 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
4 fveq2 6860 . . . 4 (𝑝 = ((Id‘𝐷)‘𝑋) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)))
54oveq1d 7404 . . 3 (𝑝 = ((Id‘𝐷)‘𝑋) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
65eqeq2d 2741 . 2 (𝑝 = ((Id‘𝐷)‘𝑋) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
7 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
8 upcic.x . . 3 (𝜑𝑋𝐵)
9 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
107, 8, 9upciclem1 49139 . 2 (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑋)𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
11 upcic.b . . 3 𝐵 = (Base‘𝐷)
12 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
13 upciclem3.od . . 3 · = (comp‘𝐷)
14 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
1514funcrcl2 49056 . . 3 (𝜑𝐷 ∈ Cat)
16 upcic.y . . 3 (𝜑𝑌𝐵)
17 upciclem3.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
18 upciclem3.l . . 3 (𝜑𝐿 ∈ (𝑌𝐻𝑋))
1911, 12, 13, 15, 8, 16, 8, 17, 18catcocl 17652 . 2 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) ∈ (𝑋𝐻𝑋))
20 eqid 2730 . . 3 (Id‘𝐷) = (Id‘𝐷)
2111, 12, 20, 15, 8catidcl 17649 . 2 (𝜑 → ((Id‘𝐷)‘𝑋) ∈ (𝑋𝐻𝑋))
22 upciclem3.mn . . 3 (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
23 upcic.c . . . 4 𝐶 = (Base‘𝐸)
24 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
25 upcic.o . . . 4 𝑂 = (comp‘𝐸)
26 upcic.z . . . 4 (𝜑𝑍𝐶)
27 upciclem3.nm . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2811, 23, 12, 24, 25, 14, 8, 16, 8, 26, 9, 13, 17, 18, 27upciclem2 49140 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
2922, 28eqtr4d 2768 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
30 eqid 2730 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
3111, 20, 30, 14, 8funcid 17838 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
3231oveq1d 7404 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
3314funcrcl3 49057 . . . 4 (𝜑𝐸 ∈ Cat)
3411, 23, 14funcf1 17834 . . . . 5 (𝜑𝐹:𝐵𝐶)
3534, 8ffvelcdmd 7059 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
3623, 24, 30, 33, 26, 25, 35, 9catlid 17650 . . 3 (𝜑 → (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = 𝑀)
3732, 36eqtr2d 2766 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
383, 6, 10, 19, 21, 29, 37reu2eqd 3709 1 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Idccid 17632   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826
This theorem is referenced by:  upciclem4  49142
  Copyright terms: Public domain W3C validator