Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem3 Structured version   Visualization version   GIF version

Theorem upciclem3 48778
Description: Lemma for upciclem4 48779. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upciclem3.od · = (comp‘𝐷)
upciclem3.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem3.l (𝜑𝐿 ∈ (𝑌𝐻𝑋))
upciclem3.mn (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
upciclem3.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem3 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Distinct variable groups:   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑓,𝐺,𝑘,𝑤   𝑓,𝐻,𝑘,𝑤   𝑓,𝐽,𝑤   𝑓,𝑀,𝑘,𝑤   𝑓,𝑂,𝑘,𝑤   𝑓,𝑋,𝑘,𝑤   𝑓,𝑍,𝑘,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑤,𝑓,𝑘)   𝐷(𝑤,𝑓,𝑘)   · (𝑤,𝑓,𝑘)   𝐸(𝑤,𝑓,𝑘)   𝐽(𝑘)   𝐾(𝑤,𝑓,𝑘)   𝐿(𝑤,𝑓,𝑘)   𝑁(𝑤,𝑓,𝑘)   𝑌(𝑤,𝑓,𝑘)

Proof of Theorem upciclem3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6924 . . . 4 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾)))
21oveq1d 7467 . . 3 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
32eqeq2d 2751 . 2 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
4 fveq2 6924 . . . 4 (𝑝 = ((Id‘𝐷)‘𝑋) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)))
54oveq1d 7467 . . 3 (𝑝 = ((Id‘𝐷)‘𝑋) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
65eqeq2d 2751 . 2 (𝑝 = ((Id‘𝐷)‘𝑋) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
7 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
8 upcic.x . . 3 (𝜑𝑋𝐵)
9 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
107, 8, 9upciclem1 48776 . 2 (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑋)𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
11 upcic.b . . 3 𝐵 = (Base‘𝐷)
12 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
13 upciclem3.od . . 3 · = (comp‘𝐷)
14 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
1514funcrcl2 48773 . . 3 (𝜑𝐷 ∈ Cat)
16 upcic.y . . 3 (𝜑𝑌𝐵)
17 upciclem3.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
18 upciclem3.l . . 3 (𝜑𝐿 ∈ (𝑌𝐻𝑋))
1911, 12, 13, 15, 8, 16, 8, 17, 18catcocl 17764 . 2 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) ∈ (𝑋𝐻𝑋))
20 eqid 2740 . . 3 (Id‘𝐷) = (Id‘𝐷)
2111, 12, 20, 15, 8catidcl 17761 . 2 (𝜑 → ((Id‘𝐷)‘𝑋) ∈ (𝑋𝐻𝑋))
22 upciclem3.mn . . 3 (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
23 upcic.c . . . 4 𝐶 = (Base‘𝐸)
24 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
25 upcic.o . . . 4 𝑂 = (comp‘𝐸)
26 upcic.z . . . 4 (𝜑𝑍𝐶)
27 upciclem3.nm . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2811, 23, 12, 24, 25, 14, 8, 16, 8, 26, 9, 13, 17, 18, 27upciclem2 48777 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
2922, 28eqtr4d 2783 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
30 eqid 2740 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
3111, 20, 30, 14, 8funcid 17955 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
3231oveq1d 7467 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
3314funcrcl3 48774 . . . 4 (𝜑𝐸 ∈ Cat)
3411, 23, 14funcf1 17951 . . . . 5 (𝜑𝐹:𝐵𝐶)
3534, 8ffvelcdmd 7123 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
3623, 24, 30, 33, 26, 25, 35, 9catlid 17762 . . 3 (𝜑 → (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = 𝑀)
3732, 36eqtr2d 2781 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
383, 6, 10, 19, 21, 29, 37reu2eqd 3759 1 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  cop 4655   class class class wbr 5168  cfv 6577  (class class class)co 7452  Basecbs 17279  Hom chom 17343  compcco 17344  Idccid 17744   Func cfunc 17939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5305  ax-sep 5319  ax-nul 5326  ax-pow 5385  ax-pr 5449  ax-un 7774
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3445  df-v 3491  df-sbc 3806  df-csb 3923  df-dif 3980  df-un 3982  df-in 3984  df-ss 3994  df-nul 4354  df-if 4550  df-pw 4625  df-sn 4650  df-pr 4652  df-op 4656  df-uni 4934  df-iun 5019  df-br 5169  df-opab 5231  df-mpt 5252  df-id 5595  df-xp 5708  df-rel 5709  df-cnv 5710  df-co 5711  df-dm 5712  df-rn 5713  df-res 5714  df-ima 5715  df-iota 6529  df-fun 6579  df-fn 6580  df-f 6581  df-f1 6582  df-fo 6583  df-f1o 6584  df-fv 6585  df-riota 7408  df-ov 7455  df-oprab 7456  df-mpo 7457  df-1st 8034  df-2nd 8035  df-map 8890  df-ixp 8960  df-cat 17747  df-cid 17748  df-func 17943
This theorem is referenced by:  upciclem4  48779
  Copyright terms: Public domain W3C validator