Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem3 Structured version   Visualization version   GIF version

Theorem upciclem3 49130
Description: Lemma for upciclem4 49131. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upciclem3.od · = (comp‘𝐷)
upciclem3.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem3.l (𝜑𝐿 ∈ (𝑌𝐻𝑋))
upciclem3.mn (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
upciclem3.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem3 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Distinct variable groups:   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑓,𝐺,𝑘,𝑤   𝑓,𝐻,𝑘,𝑤   𝑓,𝐽,𝑤   𝑓,𝑀,𝑘,𝑤   𝑓,𝑂,𝑘,𝑤   𝑓,𝑋,𝑘,𝑤   𝑓,𝑍,𝑘,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑤,𝑓,𝑘)   𝐷(𝑤,𝑓,𝑘)   · (𝑤,𝑓,𝑘)   𝐸(𝑤,𝑓,𝑘)   𝐽(𝑘)   𝐾(𝑤,𝑓,𝑘)   𝐿(𝑤,𝑓,𝑘)   𝑁(𝑤,𝑓,𝑘)   𝑌(𝑤,𝑓,𝑘)

Proof of Theorem upciclem3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . 4 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾)))
21oveq1d 7384 . . 3 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
32eqeq2d 2740 . 2 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
4 fveq2 6840 . . . 4 (𝑝 = ((Id‘𝐷)‘𝑋) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)))
54oveq1d 7384 . . 3 (𝑝 = ((Id‘𝐷)‘𝑋) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
65eqeq2d 2740 . 2 (𝑝 = ((Id‘𝐷)‘𝑋) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
7 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
8 upcic.x . . 3 (𝜑𝑋𝐵)
9 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
107, 8, 9upciclem1 49128 . 2 (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑋)𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
11 upcic.b . . 3 𝐵 = (Base‘𝐷)
12 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
13 upciclem3.od . . 3 · = (comp‘𝐷)
14 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
1514funcrcl2 49041 . . 3 (𝜑𝐷 ∈ Cat)
16 upcic.y . . 3 (𝜑𝑌𝐵)
17 upciclem3.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
18 upciclem3.l . . 3 (𝜑𝐿 ∈ (𝑌𝐻𝑋))
1911, 12, 13, 15, 8, 16, 8, 17, 18catcocl 17622 . 2 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) ∈ (𝑋𝐻𝑋))
20 eqid 2729 . . 3 (Id‘𝐷) = (Id‘𝐷)
2111, 12, 20, 15, 8catidcl 17619 . 2 (𝜑 → ((Id‘𝐷)‘𝑋) ∈ (𝑋𝐻𝑋))
22 upciclem3.mn . . 3 (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
23 upcic.c . . . 4 𝐶 = (Base‘𝐸)
24 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
25 upcic.o . . . 4 𝑂 = (comp‘𝐸)
26 upcic.z . . . 4 (𝜑𝑍𝐶)
27 upciclem3.nm . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2811, 23, 12, 24, 25, 14, 8, 16, 8, 26, 9, 13, 17, 18, 27upciclem2 49129 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
2922, 28eqtr4d 2767 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
30 eqid 2729 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
3111, 20, 30, 14, 8funcid 17808 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
3231oveq1d 7384 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
3314funcrcl3 49042 . . . 4 (𝜑𝐸 ∈ Cat)
3411, 23, 14funcf1 17804 . . . . 5 (𝜑𝐹:𝐵𝐶)
3534, 8ffvelcdmd 7039 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
3623, 24, 30, 33, 26, 25, 35, 9catlid 17620 . . 3 (𝜑 → (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = 𝑀)
3732, 36eqtr2d 2765 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
383, 6, 10, 19, 21, 29, 37reu2eqd 3704 1 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Idccid 17602   Func cfunc 17792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-func 17796
This theorem is referenced by:  upciclem4  49131
  Copyright terms: Public domain W3C validator