| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6904 |
. . . 4
⊢ (𝑝 = (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘(𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾))) |
| 2 | 1 | oveq1d 7444 |
. . 3
⊢ (𝑝 = (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) → (((𝑋𝐺𝑋)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) = (((𝑋𝐺𝑋)‘(𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 3 | 2 | eqeq2d 2747 |
. 2
⊢ (𝑝 = (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀))) |
| 4 | | fveq2 6904 |
. . . 4
⊢ (𝑝 = ((Id‘𝐷)‘𝑋) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))) |
| 5 | 4 | oveq1d 7444 |
. . 3
⊢ (𝑝 = ((Id‘𝐷)‘𝑋) → (((𝑋𝐺𝑋)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 6 | 5 | eqeq2d 2747 |
. 2
⊢ (𝑝 = ((Id‘𝐷)‘𝑋) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀))) |
| 7 | | upcic.1 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
| 8 | | upcic.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 9 | | upcic.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
| 10 | 7, 8, 9 | upciclem1 48896 |
. 2
⊢ (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑋)𝑀 = (((𝑋𝐺𝑋)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 11 | | upcic.b |
. . 3
⊢ 𝐵 = (Base‘𝐷) |
| 12 | | upcic.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
| 13 | | upciclem3.od |
. . 3
⊢ · =
(comp‘𝐷) |
| 14 | | upcic.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 15 | 14 | funcrcl2 48885 |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 16 | | upcic.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 17 | | upciclem3.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| 18 | | upciclem3.l |
. . 3
⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑋)) |
| 19 | 11, 12, 13, 15, 8, 16, 8, 17, 18 | catcocl 17724 |
. 2
⊢ (𝜑 → (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) ∈ (𝑋𝐻𝑋)) |
| 20 | | eqid 2736 |
. . 3
⊢
(Id‘𝐷) =
(Id‘𝐷) |
| 21 | 11, 12, 20, 15, 8 | catidcl 17721 |
. 2
⊢ (𝜑 → ((Id‘𝐷)‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 22 | | upciclem3.mn |
. . 3
⊢ (𝜑 → 𝑀 = (((𝑌𝐺𝑋)‘𝐿)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
| 23 | | upcic.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
| 24 | | upcic.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐸) |
| 25 | | upcic.o |
. . . 4
⊢ 𝑂 = (comp‘𝐸) |
| 26 | | upcic.z |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐶) |
| 27 | | upciclem3.nm |
. . . 4
⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 28 | 11, 23, 12, 24, 25, 14, 8, 16, 8, 26, 9, 13, 17, 18, 27 | upciclem2 48897 |
. . 3
⊢ (𝜑 → (((𝑋𝐺𝑋)‘(𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) = (((𝑌𝐺𝑋)‘𝐿)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
| 29 | 22, 28 | eqtr4d 2779 |
. 2
⊢ (𝜑 → 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 30 | | eqid 2736 |
. . . . 5
⊢
(Id‘𝐸) =
(Id‘𝐸) |
| 31 | 11, 20, 30, 14, 8 | funcid 17911 |
. . . 4
⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) |
| 32 | 31 | oveq1d 7444 |
. . 3
⊢ (𝜑 → (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) = (((Id‘𝐸)‘(𝐹‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 33 | 14 | funcrcl3 48886 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ Cat) |
| 34 | 11, 23, 14 | funcf1 17907 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 35 | 34, 8 | ffvelcdmd 7103 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐶) |
| 36 | 23, 24, 30, 33, 26, 25, 35, 9 | catlid 17722 |
. . 3
⊢ (𝜑 → (((Id‘𝐸)‘(𝐹‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀) = 𝑀) |
| 37 | 32, 36 | eqtr2d 2777 |
. 2
⊢ (𝜑 → 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑋))𝑀)) |
| 38 | 3, 6, 10, 19, 21, 29, 37 | reu2eqd 3741 |
1
⊢ (𝜑 → (𝐿(〈𝑋, 𝑌〉 · 𝑋)𝐾) = ((Id‘𝐷)‘𝑋)) |