Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem3 Structured version   Visualization version   GIF version

Theorem upciclem3 48898
Description: Lemma for upciclem4 48899. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upciclem3.od · = (comp‘𝐷)
upciclem3.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem3.l (𝜑𝐿 ∈ (𝑌𝐻𝑋))
upciclem3.mn (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
upciclem3.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem3 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Distinct variable groups:   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑓,𝐺,𝑘,𝑤   𝑓,𝐻,𝑘,𝑤   𝑓,𝐽,𝑤   𝑓,𝑀,𝑘,𝑤   𝑓,𝑂,𝑘,𝑤   𝑓,𝑋,𝑘,𝑤   𝑓,𝑍,𝑘,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑤,𝑓,𝑘)   𝐷(𝑤,𝑓,𝑘)   · (𝑤,𝑓,𝑘)   𝐸(𝑤,𝑓,𝑘)   𝐽(𝑘)   𝐾(𝑤,𝑓,𝑘)   𝐿(𝑤,𝑓,𝑘)   𝑁(𝑤,𝑓,𝑘)   𝑌(𝑤,𝑓,𝑘)

Proof of Theorem upciclem3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6904 . . . 4 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾)))
21oveq1d 7444 . . 3 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
32eqeq2d 2747 . 2 (𝑝 = (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
4 fveq2 6904 . . . 4 (𝑝 = ((Id‘𝐷)‘𝑋) → ((𝑋𝐺𝑋)‘𝑝) = ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)))
54oveq1d 7444 . . 3 (𝑝 = ((Id‘𝐷)‘𝑋) → (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
65eqeq2d 2747 . 2 (𝑝 = ((Id‘𝐷)‘𝑋) → (𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) ↔ 𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀)))
7 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
8 upcic.x . . 3 (𝜑𝑋𝐵)
9 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
107, 8, 9upciclem1 48896 . 2 (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑋)𝑀 = (((𝑋𝐺𝑋)‘𝑝)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
11 upcic.b . . 3 𝐵 = (Base‘𝐷)
12 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
13 upciclem3.od . . 3 · = (comp‘𝐷)
14 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
1514funcrcl2 48885 . . 3 (𝜑𝐷 ∈ Cat)
16 upcic.y . . 3 (𝜑𝑌𝐵)
17 upciclem3.k . . 3 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
18 upciclem3.l . . 3 (𝜑𝐿 ∈ (𝑌𝐻𝑋))
1911, 12, 13, 15, 8, 16, 8, 17, 18catcocl 17724 . 2 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) ∈ (𝑋𝐻𝑋))
20 eqid 2736 . . 3 (Id‘𝐷) = (Id‘𝐷)
2111, 12, 20, 15, 8catidcl 17721 . 2 (𝜑 → ((Id‘𝐷)‘𝑋) ∈ (𝑋𝐻𝑋))
22 upciclem3.mn . . 3 (𝜑𝑀 = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
23 upcic.c . . . 4 𝐶 = (Base‘𝐸)
24 upcic.j . . . 4 𝐽 = (Hom ‘𝐸)
25 upcic.o . . . 4 𝑂 = (comp‘𝐸)
26 upcic.z . . . 4 (𝜑𝑍𝐶)
27 upciclem3.nm . . . 4 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2811, 23, 12, 24, 25, 14, 8, 16, 8, 26, 9, 13, 17, 18, 27upciclem2 48897 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((𝑌𝐺𝑋)‘𝐿)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑋))𝑁))
2922, 28eqtr4d 2779 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘(𝐿(⟨𝑋, 𝑌· 𝑋)𝐾))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
30 eqid 2736 . . . . 5 (Id‘𝐸) = (Id‘𝐸)
3111, 20, 30, 14, 8funcid 17911 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋)) = ((Id‘𝐸)‘(𝐹𝑋)))
3231oveq1d 7444 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
3314funcrcl3 48886 . . . 4 (𝜑𝐸 ∈ Cat)
3411, 23, 14funcf1 17907 . . . . 5 (𝜑𝐹:𝐵𝐶)
3534, 8ffvelcdmd 7103 . . . 4 (𝜑 → (𝐹𝑋) ∈ 𝐶)
3623, 24, 30, 33, 26, 25, 35, 9catlid 17722 . . 3 (𝜑 → (((Id‘𝐸)‘(𝐹𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀) = 𝑀)
3732, 36eqtr2d 2777 . 2 (𝜑𝑀 = (((𝑋𝐺𝑋)‘((Id‘𝐷)‘𝑋))(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑋))𝑀))
383, 6, 10, 19, 21, 29, 37reu2eqd 3741 1 (𝜑 → (𝐿(⟨𝑋, 𝑌· 𝑋)𝐾) = ((Id‘𝐷)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3060  ∃!wreu 3377  cop 4630   class class class wbr 5141  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  compcco 17305  Idccid 17704   Func cfunc 17895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-1st 8010  df-2nd 8011  df-map 8864  df-ixp 8934  df-cat 17707  df-cid 17708  df-func 17899
This theorem is referenced by:  upciclem4  48899
  Copyright terms: Public domain W3C validator