| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upeu | Structured version Visualization version GIF version | ||
| Description: A universal property defines an essentially unique (strong form) pair of object 𝑋 and morphism 𝑀 if it exists. (Contributed by Zhi Wang, 19-Sep-2025.) |
| Ref | Expression |
|---|---|
| upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
| upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
| upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
| upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| upcic.z | ⊢ (𝜑 → 𝑍 ∈ 𝐶) |
| upcic.m | ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
| upcic.1 | ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
| upcic.n | ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
| upcic.2 | ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
| Ref | Expression |
|---|---|
| upeu | ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | upcic.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 3 | upcic.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 4 | upcic.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 5 | upcic.o | . . . 4 ⊢ 𝑂 = (comp‘𝐸) | |
| 6 | upcic.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 7 | upcic.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | upcic.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | upcic.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐶) | |
| 10 | upcic.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) | |
| 11 | upcic.1 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) | |
| 12 | upcic.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) | |
| 13 | upcic.2 | . . . 4 ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | upciclem4 48953 | . . 3 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 15 | 14 | simprd 495 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 16 | eqid 2734 | . . . 4 ⊢ (Iso‘𝐷) = (Iso‘𝐷) | |
| 17 | 6 | funcrcl2 48937 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 18 | 1, 3, 16, 17, 7, 8 | isohom 17792 | . . 3 ⊢ (𝜑 → (𝑋(Iso‘𝐷)𝑌) ⊆ (𝑋𝐻𝑌)) |
| 19 | 11, 8, 12 | upciclem1 48950 | . . . 4 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 20 | reurmo 3366 | . . . 4 ⊢ (∃!𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) → ∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ (𝜑 → ∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 22 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑟(𝑋(Iso‘𝐷)𝑌) | |
| 23 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑟(𝑋𝐻𝑌) | |
| 24 | 22, 23 | ssrmof 4031 | . . 3 ⊢ ((𝑋(Iso‘𝐷)𝑌) ⊆ (𝑋𝐻𝑌) → (∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) → ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 25 | 18, 21, 24 | sylc 65 | . 2 ⊢ (𝜑 → ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| 26 | reu5 3365 | . 2 ⊢ (∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ (∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ∧ ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) | |
| 27 | 15, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∃!wreu 3361 ∃*wrmo 3362 ⊆ wss 3931 〈cop 4612 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Hom chom 17285 compcco 17286 Isociso 17762 ≃𝑐 ccic 17811 Func cfunc 17871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-supp 8168 df-map 8850 df-ixp 8920 df-cat 17683 df-cid 17684 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 df-func 17875 |
| This theorem is referenced by: upeu3 48977 |
| Copyright terms: Public domain | W3C validator |