![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upeu | Structured version Visualization version GIF version |
Description: A universal property defines an essentially unique (strong form) pair of object 𝑋 and morphism 𝑀 if it exists. (Contributed by Zhi Wang, 19-Sep-2025.) |
Ref | Expression |
---|---|
upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
upcic.z | ⊢ (𝜑 → 𝑍 ∈ 𝐶) |
upcic.m | ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
upcic.1 | ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
upcic.n | ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
upcic.2 | ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
Ref | Expression |
---|---|
upeu | ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upcic.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
2 | upcic.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
3 | upcic.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
4 | upcic.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
5 | upcic.o | . . . 4 ⊢ 𝑂 = (comp‘𝐸) | |
6 | upcic.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
7 | upcic.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | upcic.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | upcic.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐶) | |
10 | upcic.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) | |
11 | upcic.1 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) | |
12 | upcic.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) | |
13 | upcic.2 | . . . 4 ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | upciclem4 48899 | . . 3 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
15 | 14 | simprd 495 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
16 | eqid 2736 | . . . 4 ⊢ (Iso‘𝐷) = (Iso‘𝐷) | |
17 | 6 | funcrcl2 48885 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
18 | 1, 3, 16, 17, 7, 8 | isohom 17816 | . . 3 ⊢ (𝜑 → (𝑋(Iso‘𝐷)𝑌) ⊆ (𝑋𝐻𝑌)) |
19 | 11, 8, 12 | upciclem1 48896 | . . . 4 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
20 | reurmo 3382 | . . . 4 ⊢ (∃!𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) → ∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ (𝜑 → ∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
22 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑟(𝑋(Iso‘𝐷)𝑌) | |
23 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑟(𝑋𝐻𝑌) | |
24 | 22, 23 | ssrmof 4050 | . . 3 ⊢ ((𝑋(Iso‘𝐷)𝑌) ⊆ (𝑋𝐻𝑌) → (∃*𝑟 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) → ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
25 | 18, 21, 24 | sylc 65 | . 2 ⊢ (𝜑 → ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
26 | reu5 3381 | . 2 ⊢ (∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ (∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ∧ ∃*𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) | |
27 | 15, 25, 26 | sylanbrc 583 | 1 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3060 ∃wrex 3069 ∃!wreu 3377 ∃*wrmo 3378 ⊆ wss 3950 〈cop 4630 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 compcco 17305 Isociso 17786 ≃𝑐 ccic 17835 Func cfunc 17895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-supp 8182 df-map 8864 df-ixp 8934 df-cat 17707 df-cid 17708 df-sect 17787 df-inv 17788 df-iso 17789 df-cic 17836 df-func 17899 |
This theorem is referenced by: upeu3 48919 |
Copyright terms: Public domain | W3C validator |