Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem2 Structured version   Visualization version   GIF version

Theorem upciclem2 48923
Description: Lemma for upciclem3 48924 and upeu2 48928. (Contributed by Zhi Wang, 19-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upciclem2.z (𝜑𝑍𝐵)
upciclem2.w (𝜑𝑊𝐶)
upciclem2.m (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
upciclem2.od · = (comp‘𝐷)
upciclem2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem2.l (𝜑𝐿 ∈ (𝑌𝐻𝑍))
upciclem2.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))

Proof of Theorem upciclem2
StepHypRef Expression
1 upcic.c . . 3 𝐶 = (Base‘𝐸)
2 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
3 upcic.o . . 3 𝑂 = (comp‘𝐸)
4 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
54funcrcl3 48910 . . 3 (𝜑𝐸 ∈ Cat)
6 upciclem2.w . . 3 (𝜑𝑊𝐶)
7 upcic.b . . . . 5 𝐵 = (Base‘𝐷)
87, 1, 4funcf1 17864 . . . 4 (𝜑𝐹:𝐵𝐶)
9 upcic.x . . . 4 (𝜑𝑋𝐵)
108, 9ffvelcdmd 7071 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐶)
11 upcic.y . . . 4 (𝜑𝑌𝐵)
128, 11ffvelcdmd 7071 . . 3 (𝜑 → (𝐹𝑌) ∈ 𝐶)
13 upciclem2.m . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
14 upcic.h . . . . 5 𝐻 = (Hom ‘𝐷)
157, 14, 2, 4, 9, 11funcf2 17866 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
16 upciclem2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
1715, 16ffvelcdmd 7071 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
18 upciclem2.z . . . 4 (𝜑𝑍𝐵)
198, 18ffvelcdmd 7071 . . 3 (𝜑 → (𝐹𝑍) ∈ 𝐶)
207, 14, 2, 4, 11, 18funcf2 17866 . . . 4 (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹𝑌)𝐽(𝐹𝑍)))
21 upciclem2.l . . . 4 (𝜑𝐿 ∈ (𝑌𝐻𝑍))
2220, 21ffvelcdmd 7071 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹𝑌)𝐽(𝐹𝑍)))
231, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22catass 17683 . 2 (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
24 upciclem2.od . . . 4 · = (comp‘𝐷)
257, 14, 24, 3, 4, 9, 11, 18, 16, 21funcco 17869 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾)))
2625oveq1d 7414 . 2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀))
27 upciclem2.nm . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2827oveq2d 7415 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2923, 26, 283eqtr4d 2779 1 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4605   class class class wbr 5116  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267  compcco 17268   Func cfunc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-map 8836  df-ixp 8906  df-cat 17665  df-func 17856
This theorem is referenced by:  upciclem3  48924  upeu2  48928
  Copyright terms: Public domain W3C validator