| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upciclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for upciclem3 48898 and upeu2 48902. (Contributed by Zhi Wang, 19-Sep-2025.) |
| Ref | Expression |
|---|---|
| upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
| upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
| upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
| upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| upciclem2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| upciclem2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| upciclem2.m | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| upciclem2.od | ⊢ · = (comp‘𝐷) |
| upciclem2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| upciclem2.l | ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) |
| upciclem2.nm | ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| Ref | Expression |
|---|---|
| upciclem2 | ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
| 2 | upcic.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 3 | upcic.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
| 4 | upcic.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 5 | 4 | funcrcl3 48886 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 6 | upciclem2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐶) | |
| 7 | upcic.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | 7, 1, 4 | funcf1 17907 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 9 | upcic.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 8, 9 | ffvelcdmd 7103 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐶) |
| 11 | upcic.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 8, 11 | ffvelcdmd 7103 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐶) |
| 13 | upciclem2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) | |
| 14 | upcic.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 15 | 7, 14, 2, 4, 9, 11 | funcf2 17909 | . . . 4 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 16 | upciclem2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 17 | 15, 16 | ffvelcdmd 7103 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 18 | upciclem2.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 19 | 8, 18 | ffvelcdmd 7103 | . . 3 ⊢ (𝜑 → (𝐹‘𝑍) ∈ 𝐶) |
| 20 | 7, 14, 2, 4, 11, 18 | funcf2 17909 | . . . 4 ⊢ (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
| 21 | upciclem2.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) | |
| 22 | 20, 21 | ffvelcdmd 7103 | . . 3 ⊢ (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
| 23 | 1, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22 | catass 17725 | . 2 ⊢ (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 24 | upciclem2.od | . . . 4 ⊢ · = (comp‘𝐷) | |
| 25 | 7, 14, 24, 3, 4, 9, 11, 18, 16, 21 | funcco 17912 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))) |
| 26 | 25 | oveq1d 7444 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀)) |
| 27 | upciclem2.nm | . . 3 ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | |
| 28 | 27 | oveq2d 7445 | . 2 ⊢ (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 29 | 23, 26, 28 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4630 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 compcco 17305 Func cfunc 17895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-map 8864 df-ixp 8934 df-cat 17707 df-func 17899 |
| This theorem is referenced by: upciclem3 48898 upeu2 48902 |
| Copyright terms: Public domain | W3C validator |