Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem2 Structured version   Visualization version   GIF version

Theorem upciclem2 49140
Description: Lemma for upciclem3 49141 and upeu2 49145. (Contributed by Zhi Wang, 19-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upciclem2.z (𝜑𝑍𝐵)
upciclem2.w (𝜑𝑊𝐶)
upciclem2.m (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
upciclem2.od · = (comp‘𝐷)
upciclem2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem2.l (𝜑𝐿 ∈ (𝑌𝐻𝑍))
upciclem2.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))

Proof of Theorem upciclem2
StepHypRef Expression
1 upcic.c . . 3 𝐶 = (Base‘𝐸)
2 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
3 upcic.o . . 3 𝑂 = (comp‘𝐸)
4 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
54funcrcl3 49057 . . 3 (𝜑𝐸 ∈ Cat)
6 upciclem2.w . . 3 (𝜑𝑊𝐶)
7 upcic.b . . . . 5 𝐵 = (Base‘𝐷)
87, 1, 4funcf1 17834 . . . 4 (𝜑𝐹:𝐵𝐶)
9 upcic.x . . . 4 (𝜑𝑋𝐵)
108, 9ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐶)
11 upcic.y . . . 4 (𝜑𝑌𝐵)
128, 11ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑌) ∈ 𝐶)
13 upciclem2.m . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
14 upcic.h . . . . 5 𝐻 = (Hom ‘𝐷)
157, 14, 2, 4, 9, 11funcf2 17836 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
16 upciclem2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
1715, 16ffvelcdmd 7059 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
18 upciclem2.z . . . 4 (𝜑𝑍𝐵)
198, 18ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑍) ∈ 𝐶)
207, 14, 2, 4, 11, 18funcf2 17836 . . . 4 (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹𝑌)𝐽(𝐹𝑍)))
21 upciclem2.l . . . 4 (𝜑𝐿 ∈ (𝑌𝐻𝑍))
2220, 21ffvelcdmd 7059 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹𝑌)𝐽(𝐹𝑍)))
231, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22catass 17653 . 2 (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
24 upciclem2.od . . . 4 · = (comp‘𝐷)
257, 14, 24, 3, 4, 9, 11, 18, 16, 21funcco 17839 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾)))
2625oveq1d 7404 . 2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀))
27 upciclem2.nm . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2827oveq2d 7405 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2923, 26, 283eqtr4d 2775 1 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-func 17826
This theorem is referenced by:  upciclem3  49141  upeu2  49145
  Copyright terms: Public domain W3C validator