| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upciclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for upciclem3 48924 and upeu2 48928. (Contributed by Zhi Wang, 19-Sep-2025.) |
| Ref | Expression |
|---|---|
| upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
| upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
| upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
| upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| upciclem2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| upciclem2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| upciclem2.m | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| upciclem2.od | ⊢ · = (comp‘𝐷) |
| upciclem2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
| upciclem2.l | ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) |
| upciclem2.nm | ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
| Ref | Expression |
|---|---|
| upciclem2 | ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
| 2 | upcic.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 3 | upcic.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
| 4 | upcic.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 5 | 4 | funcrcl3 48910 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 6 | upciclem2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐶) | |
| 7 | upcic.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | 7, 1, 4 | funcf1 17864 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 9 | upcic.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | 8, 9 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐶) |
| 11 | upcic.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | 8, 11 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐶) |
| 13 | upciclem2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) | |
| 14 | upcic.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 15 | 7, 14, 2, 4, 9, 11 | funcf2 17866 | . . . 4 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 16 | upciclem2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
| 17 | 15, 16 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 18 | upciclem2.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 19 | 8, 18 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → (𝐹‘𝑍) ∈ 𝐶) |
| 20 | 7, 14, 2, 4, 11, 18 | funcf2 17866 | . . . 4 ⊢ (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
| 21 | upciclem2.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) | |
| 22 | 20, 21 | ffvelcdmd 7071 | . . 3 ⊢ (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
| 23 | 1, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22 | catass 17683 | . 2 ⊢ (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 24 | upciclem2.od | . . . 4 ⊢ · = (comp‘𝐷) | |
| 25 | 7, 14, 24, 3, 4, 9, 11, 18, 16, 21 | funcco 17869 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))) |
| 26 | 25 | oveq1d 7414 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀)) |
| 27 | upciclem2.nm | . . 3 ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | |
| 28 | 27 | oveq2d 7415 | . 2 ⊢ (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 29 | 23, 26, 28 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4605 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 compcco 17268 Func cfunc 17852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-map 8836 df-ixp 8906 df-cat 17665 df-func 17856 |
| This theorem is referenced by: upciclem3 48924 upeu2 48928 |
| Copyright terms: Public domain | W3C validator |