Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem2 Structured version   Visualization version   GIF version

Theorem upciclem2 49328
Description: Lemma for upciclem3 49329 and upeu2 49333. (Contributed by Zhi Wang, 19-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upciclem2.z (𝜑𝑍𝐵)
upciclem2.w (𝜑𝑊𝐶)
upciclem2.m (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
upciclem2.od · = (comp‘𝐷)
upciclem2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem2.l (𝜑𝐿 ∈ (𝑌𝐻𝑍))
upciclem2.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))

Proof of Theorem upciclem2
StepHypRef Expression
1 upcic.c . . 3 𝐶 = (Base‘𝐸)
2 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
3 upcic.o . . 3 𝑂 = (comp‘𝐸)
4 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
54funcrcl3 49241 . . 3 (𝜑𝐸 ∈ Cat)
6 upciclem2.w . . 3 (𝜑𝑊𝐶)
7 upcic.b . . . . 5 𝐵 = (Base‘𝐷)
87, 1, 4funcf1 17781 . . . 4 (𝜑𝐹:𝐵𝐶)
9 upcic.x . . . 4 (𝜑𝑋𝐵)
108, 9ffvelcdmd 7027 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐶)
11 upcic.y . . . 4 (𝜑𝑌𝐵)
128, 11ffvelcdmd 7027 . . 3 (𝜑 → (𝐹𝑌) ∈ 𝐶)
13 upciclem2.m . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
14 upcic.h . . . . 5 𝐻 = (Hom ‘𝐷)
157, 14, 2, 4, 9, 11funcf2 17783 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
16 upciclem2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
1715, 16ffvelcdmd 7027 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
18 upciclem2.z . . . 4 (𝜑𝑍𝐵)
198, 18ffvelcdmd 7027 . . 3 (𝜑 → (𝐹𝑍) ∈ 𝐶)
207, 14, 2, 4, 11, 18funcf2 17783 . . . 4 (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹𝑌)𝐽(𝐹𝑍)))
21 upciclem2.l . . . 4 (𝜑𝐿 ∈ (𝑌𝐻𝑍))
2220, 21ffvelcdmd 7027 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹𝑌)𝐽(𝐹𝑍)))
231, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22catass 17600 . 2 (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
24 upciclem2.od . . . 4 · = (comp‘𝐷)
257, 14, 24, 3, 4, 9, 11, 18, 16, 21funcco 17786 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾)))
2625oveq1d 7370 . 2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀))
27 upciclem2.nm . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2827oveq2d 7371 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2923, 26, 283eqtr4d 2778 1 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180   Func cfunc 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-func 17773
This theorem is referenced by:  upciclem3  49329  upeu2  49333
  Copyright terms: Public domain W3C validator