![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upciclem2 | Structured version Visualization version GIF version |
Description: Lemma for upciclem3 48778 and upeu2 48782. (Contributed by Zhi Wang, 19-Sep-2025.) |
Ref | Expression |
---|---|
upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
upciclem2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
upciclem2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
upciclem2.m | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
upciclem2.od | ⊢ · = (comp‘𝐷) |
upciclem2.k | ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) |
upciclem2.l | ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) |
upciclem2.nm | ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
Ref | Expression |
---|---|
upciclem2 | ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upcic.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
2 | upcic.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
3 | upcic.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
4 | upcic.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
5 | 4 | funcrcl3 48774 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
6 | upciclem2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐶) | |
7 | upcic.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐷) | |
8 | 7, 1, 4 | funcf1 17951 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
9 | upcic.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 8, 9 | ffvelcdmd 7123 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐶) |
11 | upcic.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 8, 11 | ffvelcdmd 7123 | . . 3 ⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐶) |
13 | upciclem2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) | |
14 | upcic.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐷) | |
15 | 7, 14, 2, 4, 9, 11 | funcf2 17953 | . . . 4 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
16 | upciclem2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) | |
17 | 15, 16 | ffvelcdmd 7123 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
18 | upciclem2.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
19 | 8, 18 | ffvelcdmd 7123 | . . 3 ⊢ (𝜑 → (𝐹‘𝑍) ∈ 𝐶) |
20 | 7, 14, 2, 4, 11, 18 | funcf2 17953 | . . . 4 ⊢ (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
21 | upciclem2.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑍)) | |
22 | 20, 21 | ffvelcdmd 7123 | . . 3 ⊢ (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹‘𝑌)𝐽(𝐹‘𝑍))) |
23 | 1, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22 | catass 17765 | . 2 ⊢ (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
24 | upciclem2.od | . . . 4 ⊢ · = (comp‘𝐷) | |
25 | 7, 14, 24, 3, 4, 9, 11, 18, 16, 21 | funcco 17956 | . . 3 ⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))) |
26 | 25 | oveq1d 7467 | . 2 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀)) |
27 | upciclem2.nm | . . 3 ⊢ (𝜑 → 𝑁 = (((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) | |
28 | 27 | oveq2d 7468 | . 2 ⊢ (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))(((𝑋𝐺𝑌)‘𝐾)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
29 | 23, 26, 28 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(〈𝑋, 𝑌〉 · 𝑍)𝐾))(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(〈𝑊, (𝐹‘𝑌)〉𝑂(𝐹‘𝑍))𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 〈cop 4655 class class class wbr 5168 ‘cfv 6577 (class class class)co 7452 Basecbs 17279 Hom chom 17343 compcco 17344 Func cfunc 17939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5305 ax-sep 5319 ax-nul 5326 ax-pow 5385 ax-pr 5449 ax-un 7774 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3445 df-v 3491 df-sbc 3806 df-csb 3923 df-dif 3980 df-un 3982 df-in 3984 df-ss 3994 df-nul 4354 df-if 4550 df-pw 4625 df-sn 4650 df-pr 4652 df-op 4656 df-uni 4934 df-iun 5019 df-br 5169 df-opab 5231 df-mpt 5252 df-id 5595 df-xp 5708 df-rel 5709 df-cnv 5710 df-co 5711 df-dm 5712 df-rn 5713 df-res 5714 df-ima 5715 df-iota 6529 df-fun 6579 df-fn 6580 df-f 6581 df-fv 6585 df-ov 7455 df-oprab 7456 df-mpo 7457 df-1st 8034 df-2nd 8035 df-map 8890 df-ixp 8960 df-cat 17747 df-func 17943 |
This theorem is referenced by: upciclem3 48778 upeu2 48782 |
Copyright terms: Public domain | W3C validator |