Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem2 Structured version   Visualization version   GIF version

Theorem upciclem2 49152
Description: Lemma for upciclem3 49153 and upeu2 49157. (Contributed by Zhi Wang, 19-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upciclem2.z (𝜑𝑍𝐵)
upciclem2.w (𝜑𝑊𝐶)
upciclem2.m (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
upciclem2.od · = (comp‘𝐷)
upciclem2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem2.l (𝜑𝐿 ∈ (𝑌𝐻𝑍))
upciclem2.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))

Proof of Theorem upciclem2
StepHypRef Expression
1 upcic.c . . 3 𝐶 = (Base‘𝐸)
2 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
3 upcic.o . . 3 𝑂 = (comp‘𝐸)
4 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
54funcrcl3 49065 . . 3 (𝜑𝐸 ∈ Cat)
6 upciclem2.w . . 3 (𝜑𝑊𝐶)
7 upcic.b . . . . 5 𝐵 = (Base‘𝐷)
87, 1, 4funcf1 17773 . . . 4 (𝜑𝐹:𝐵𝐶)
9 upcic.x . . . 4 (𝜑𝑋𝐵)
108, 9ffvelcdmd 7019 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐶)
11 upcic.y . . . 4 (𝜑𝑌𝐵)
128, 11ffvelcdmd 7019 . . 3 (𝜑 → (𝐹𝑌) ∈ 𝐶)
13 upciclem2.m . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
14 upcic.h . . . . 5 𝐻 = (Hom ‘𝐷)
157, 14, 2, 4, 9, 11funcf2 17775 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
16 upciclem2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
1715, 16ffvelcdmd 7019 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
18 upciclem2.z . . . 4 (𝜑𝑍𝐵)
198, 18ffvelcdmd 7019 . . 3 (𝜑 → (𝐹𝑍) ∈ 𝐶)
207, 14, 2, 4, 11, 18funcf2 17775 . . . 4 (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹𝑌)𝐽(𝐹𝑍)))
21 upciclem2.l . . . 4 (𝜑𝐿 ∈ (𝑌𝐻𝑍))
2220, 21ffvelcdmd 7019 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹𝑌)𝐽(𝐹𝑍)))
231, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22catass 17592 . 2 (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
24 upciclem2.od . . . 4 · = (comp‘𝐷)
257, 14, 24, 3, 4, 9, 11, 18, 16, 21funcco 17778 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾)))
2625oveq1d 7364 . 2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀))
27 upciclem2.nm . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2827oveq2d 7365 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2923, 26, 283eqtr4d 2774 1 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4583   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  compcco 17173   Func cfunc 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-func 17765
This theorem is referenced by:  upciclem3  49153  upeu2  49157
  Copyright terms: Public domain W3C validator