Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upciclem2 Structured version   Visualization version   GIF version

Theorem upciclem2 49199
Description: Lemma for upciclem3 49200 and upeu2 49204. (Contributed by Zhi Wang, 19-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upciclem2.z (𝜑𝑍𝐵)
upciclem2.w (𝜑𝑊𝐶)
upciclem2.m (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
upciclem2.od · = (comp‘𝐷)
upciclem2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
upciclem2.l (𝜑𝐿 ∈ (𝑌𝐻𝑍))
upciclem2.nm (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
Assertion
Ref Expression
upciclem2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))

Proof of Theorem upciclem2
StepHypRef Expression
1 upcic.c . . 3 𝐶 = (Base‘𝐸)
2 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
3 upcic.o . . 3 𝑂 = (comp‘𝐸)
4 upcic.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
54funcrcl3 49112 . . 3 (𝜑𝐸 ∈ Cat)
6 upciclem2.w . . 3 (𝜑𝑊𝐶)
7 upcic.b . . . . 5 𝐵 = (Base‘𝐷)
87, 1, 4funcf1 17768 . . . 4 (𝜑𝐹:𝐵𝐶)
9 upcic.x . . . 4 (𝜑𝑋𝐵)
108, 9ffvelcdmd 7013 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐶)
11 upcic.y . . . 4 (𝜑𝑌𝐵)
128, 11ffvelcdmd 7013 . . 3 (𝜑 → (𝐹𝑌) ∈ 𝐶)
13 upciclem2.m . . 3 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
14 upcic.h . . . . 5 𝐻 = (Hom ‘𝐷)
157, 14, 2, 4, 9, 11funcf2 17770 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
16 upciclem2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
1715, 16ffvelcdmd 7013 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐾) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
18 upciclem2.z . . . 4 (𝜑𝑍𝐵)
198, 18ffvelcdmd 7013 . . 3 (𝜑 → (𝐹𝑍) ∈ 𝐶)
207, 14, 2, 4, 11, 18funcf2 17770 . . . 4 (𝜑 → (𝑌𝐺𝑍):(𝑌𝐻𝑍)⟶((𝐹𝑌)𝐽(𝐹𝑍)))
21 upciclem2.l . . . 4 (𝜑𝐿 ∈ (𝑌𝐻𝑍))
2220, 21ffvelcdmd 7013 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐿) ∈ ((𝐹𝑌)𝐽(𝐹𝑍)))
231, 2, 3, 5, 6, 10, 12, 13, 17, 19, 22catass 17587 . 2 (𝜑 → ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
24 upciclem2.od . . . 4 · = (comp‘𝐷)
257, 14, 24, 3, 4, 9, 11, 18, 16, 21funcco 17773 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾)) = (((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾)))
2625oveq1d 7356 . 2 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = ((((𝑌𝐺𝑍)‘𝐿)(⟨(𝐹𝑋), (𝐹𝑌)⟩𝑂(𝐹𝑍))((𝑋𝐺𝑌)‘𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀))
27 upciclem2.nm . . 3 (𝜑𝑁 = (((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀))
2827oveq2d 7357 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))(((𝑋𝐺𝑌)‘𝐾)(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
2923, 26, 283eqtr4d 2776 1 (𝜑 → (((𝑋𝐺𝑍)‘(𝐿(⟨𝑋, 𝑌· 𝑍)𝐾))(⟨𝑊, (𝐹𝑋)⟩𝑂(𝐹𝑍))𝑀) = (((𝑌𝐺𝑍)‘𝐿)(⟨𝑊, (𝐹𝑌)⟩𝑂(𝐹𝑍))𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  Hom chom 17167  compcco 17168   Func cfunc 17756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ixp 8817  df-cat 17569  df-func 17760
This theorem is referenced by:  upciclem3  49200  upeu2  49204
  Copyright terms: Public domain W3C validator