Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upcic Structured version   Visualization version   GIF version

Theorem upcic 48926
Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upcic.n (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
upcic.2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
Assertion
Ref Expression
upcic (𝜑𝑋( ≃𝑐𝐷)𝑌)
Distinct variable groups:   𝑣,𝐵   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑔,𝐹,𝑙,𝑣   𝑓,𝐺,𝑘,𝑤   𝑔,𝐺,𝑙,𝑣   𝑓,𝐻,𝑘,𝑤   𝑔,𝐻,𝑙,𝑣   𝑓,𝐽,𝑤   𝑔,𝐽,𝑣   𝑓,𝑀,𝑘,𝑤   𝑔,𝑀,𝑙   𝑓,𝑁,𝑘   𝑔,𝑁,𝑙,𝑣   𝑓,𝑂,𝑘,𝑤   𝑔,𝑂,𝑙,𝑣   𝑓,𝑋,𝑘,𝑤   𝑔,𝑋,𝑙,𝑣   𝑓,𝑌,𝑘,𝑤   𝑔,𝑌,𝑙,𝑣   𝑓,𝑍,𝑘,𝑤   𝑔,𝑍,𝑙,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐵(𝑓,𝑔,𝑘,𝑙)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑘,𝑙)   𝑀(𝑣)   𝑁(𝑤)

Proof of Theorem upcic
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 upcic.b . . 3 𝐵 = (Base‘𝐷)
2 upcic.c . . 3 𝐶 = (Base‘𝐸)
3 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
4 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
5 upcic.o . . 3 𝑂 = (comp‘𝐸)
6 upcic.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
7 upcic.x . . 3 (𝜑𝑋𝐵)
8 upcic.y . . 3 (𝜑𝑌𝐵)
9 upcic.z . . 3 (𝜑𝑍𝐶)
10 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
11 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
12 upcic.n . . 3 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
13 upcic.2 . . 3 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13upciclem4 48925 . 2 (𝜑 → (𝑋( ≃𝑐𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
1514simpld 494 1 (𝜑𝑋( ≃𝑐𝐷)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  wrex 3059  ∃!wreu 3355  cop 4605   class class class wbr 5116  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267  compcco 17268  Isociso 17744  𝑐 ccic 17793   Func cfunc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-supp 8154  df-map 8836  df-ixp 8906  df-cat 17665  df-cid 17666  df-sect 17745  df-inv 17746  df-iso 17747  df-cic 17794  df-func 17856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator