| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upcic | Structured version Visualization version GIF version | ||
| Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.) |
| Ref | Expression |
|---|---|
| upcic.b | ⊢ 𝐵 = (Base‘𝐷) |
| upcic.c | ⊢ 𝐶 = (Base‘𝐸) |
| upcic.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| upcic.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| upcic.o | ⊢ 𝑂 = (comp‘𝐸) |
| upcic.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| upcic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| upcic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| upcic.z | ⊢ (𝜑 → 𝑍 ∈ 𝐶) |
| upcic.m | ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
| upcic.1 | ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
| upcic.n | ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
| upcic.2 | ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
| Ref | Expression |
|---|---|
| upcic | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | upcic.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
| 3 | upcic.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 4 | upcic.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 5 | upcic.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
| 6 | upcic.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 7 | upcic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | upcic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | upcic.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐶) | |
| 10 | upcic.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) | |
| 11 | upcic.1 | . . 3 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) | |
| 12 | upcic.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) | |
| 13 | upcic.2 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | upciclem4 48925 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
| 15 | 14 | simpld 494 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∃!wreu 3355 〈cop 4605 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 compcco 17268 Isociso 17744 ≃𝑐 ccic 17793 Func cfunc 17852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-supp 8154 df-map 8836 df-ixp 8906 df-cat 17665 df-cid 17666 df-sect 17745 df-inv 17746 df-iso 17747 df-cic 17794 df-func 17856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |