Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upcic Structured version   Visualization version   GIF version

Theorem upcic 49202
Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025.)
Hypotheses
Ref Expression
upcic.b 𝐵 = (Base‘𝐷)
upcic.c 𝐶 = (Base‘𝐸)
upcic.h 𝐻 = (Hom ‘𝐷)
upcic.j 𝐽 = (Hom ‘𝐸)
upcic.o 𝑂 = (comp‘𝐸)
upcic.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
upcic.x (𝜑𝑋𝐵)
upcic.y (𝜑𝑌𝐵)
upcic.z (𝜑𝑍𝐶)
upcic.m (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
upcic.1 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
upcic.n (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
upcic.2 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
Assertion
Ref Expression
upcic (𝜑𝑋( ≃𝑐𝐷)𝑌)
Distinct variable groups:   𝑣,𝐵   𝑤,𝐵   𝑓,𝐹,𝑘,𝑤   𝑔,𝐹,𝑙,𝑣   𝑓,𝐺,𝑘,𝑤   𝑔,𝐺,𝑙,𝑣   𝑓,𝐻,𝑘,𝑤   𝑔,𝐻,𝑙,𝑣   𝑓,𝐽,𝑤   𝑔,𝐽,𝑣   𝑓,𝑀,𝑘,𝑤   𝑔,𝑀,𝑙   𝑓,𝑁,𝑘   𝑔,𝑁,𝑙,𝑣   𝑓,𝑂,𝑘,𝑤   𝑔,𝑂,𝑙,𝑣   𝑓,𝑋,𝑘,𝑤   𝑔,𝑋,𝑙,𝑣   𝑓,𝑌,𝑘,𝑤   𝑔,𝑌,𝑙,𝑣   𝑓,𝑍,𝑘,𝑤   𝑔,𝑍,𝑙,𝑣
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐵(𝑓,𝑔,𝑘,𝑙)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐷(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐸(𝑤,𝑣,𝑓,𝑔,𝑘,𝑙)   𝐽(𝑘,𝑙)   𝑀(𝑣)   𝑁(𝑤)

Proof of Theorem upcic
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 upcic.b . . 3 𝐵 = (Base‘𝐷)
2 upcic.c . . 3 𝐶 = (Base‘𝐸)
3 upcic.h . . 3 𝐻 = (Hom ‘𝐷)
4 upcic.j . . 3 𝐽 = (Hom ‘𝐸)
5 upcic.o . . 3 𝑂 = (comp‘𝐸)
6 upcic.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
7 upcic.x . . 3 (𝜑𝑋𝐵)
8 upcic.y . . 3 (𝜑𝑌𝐵)
9 upcic.z . . 3 (𝜑𝑍𝐶)
10 upcic.m . . 3 (𝜑𝑀 ∈ (𝑍𝐽(𝐹𝑋)))
11 upcic.1 . . 3 (𝜑 → ∀𝑤𝐵𝑓 ∈ (𝑍𝐽(𝐹𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑤))𝑀))
12 upcic.n . . 3 (𝜑𝑁 ∈ (𝑍𝐽(𝐹𝑌)))
13 upcic.2 . . 3 (𝜑 → ∀𝑣𝐵𝑔 ∈ (𝑍𝐽(𝐹𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(⟨𝑍, (𝐹𝑌)⟩𝑂(𝐹𝑣))𝑁))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13upciclem4 49201 . 2 (𝜑 → (𝑋( ≃𝑐𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(⟨𝑍, (𝐹𝑋)⟩𝑂(𝐹𝑌))𝑀)))
1514simpld 494 1 (𝜑𝑋( ≃𝑐𝐷)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  Hom chom 17167  compcco 17168  Isociso 17648  𝑐 ccic 17697   Func cfunc 17756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-supp 8086  df-map 8747  df-ixp 8817  df-cat 17569  df-cid 17570  df-sect 17649  df-inv 17650  df-iso 17651  df-cic 17698  df-func 17760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator