Step | Hyp | Ref
| Expression |
1 | | upcic.1 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
2 | | upcic.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
3 | | upcic.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
4 | 1, 2, 3 | upciclem1 48776 |
. . . 4
⊢ (𝜑 → ∃!𝑝 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
5 | | reurex 3392 |
. . . 4
⊢
(∃!𝑝 ∈
(𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) → ∃𝑝 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ (𝑋𝐻𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
7 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) → 𝜑) |
8 | | upcic.2 |
. . . . . 6
⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
9 | | upcic.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
10 | | upcic.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
11 | 8, 9, 10 | upciclem1 48776 |
. . . . 5
⊢ (𝜑 → ∃!𝑞 ∈ (𝑌𝐻𝑋)𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
12 | | reurex 3392 |
. . . . 5
⊢
(∃!𝑞 ∈
(𝑌𝐻𝑋)𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁) → ∃𝑞 ∈ (𝑌𝐻𝑋)𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
13 | 7, 11, 12 | 3syl 18 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) → ∃𝑞 ∈ (𝑌𝐻𝑋)𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
14 | | eqid 2740 |
. . . . 5
⊢
(Iso‘𝐷) =
(Iso‘𝐷) |
15 | | upcic.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐷) |
16 | | upcic.f |
. . . . . . 7
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
17 | 16 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝐹(𝐷 Func 𝐸)𝐺) |
18 | 17 | funcrcl2 48773 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝐷 ∈ Cat) |
19 | 9 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑋 ∈ 𝐵) |
20 | 2 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑌 ∈ 𝐵) |
21 | | upcic.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐷) |
22 | | eqid 2740 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
23 | | eqid 2740 |
. . . . . 6
⊢
(Id‘𝐷) =
(Id‘𝐷) |
24 | | simplrl 776 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑝 ∈ (𝑋𝐻𝑌)) |
25 | | simprl 770 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑞 ∈ (𝑌𝐻𝑋)) |
26 | | upcic.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝐸) |
27 | | upcic.j |
. . . . . . 7
⊢ 𝐽 = (Hom ‘𝐸) |
28 | | upcic.o |
. . . . . . 7
⊢ 𝑂 = (comp‘𝐸) |
29 | | upcic.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝐶) |
30 | 29 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑍 ∈ 𝐶) |
31 | 10 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑀 ∈ (𝑍𝐽(𝐹‘𝑋))) |
32 | 1 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → ∀𝑤 ∈ 𝐵 ∀𝑓 ∈ (𝑍𝐽(𝐹‘𝑤))∃!𝑘 ∈ (𝑋𝐻𝑤)𝑓 = (((𝑋𝐺𝑤)‘𝑘)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑤))𝑀)) |
33 | | simprr 772 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁)) |
34 | | simplrr 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
35 | 15, 26, 21, 27, 28, 17, 19, 20, 30, 31, 32, 22, 24, 25, 33, 34 | upciclem3 48778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → (𝑞(〈𝑋, 𝑌〉(comp‘𝐷)𝑋)𝑝) = ((Id‘𝐷)‘𝑋)) |
36 | 3 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑁 ∈ (𝑍𝐽(𝐹‘𝑌))) |
37 | 8 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → ∀𝑣 ∈ 𝐵 ∀𝑔 ∈ (𝑍𝐽(𝐹‘𝑣))∃!𝑙 ∈ (𝑌𝐻𝑣)𝑔 = (((𝑌𝐺𝑣)‘𝑙)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑣))𝑁)) |
38 | 15, 26, 21, 27, 28, 17, 20, 19, 30, 36, 37, 22, 25, 24, 34, 33 | upciclem3 48778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → (𝑝(〈𝑌, 𝑋〉(comp‘𝐷)𝑌)𝑞) = ((Id‘𝐷)‘𝑌)) |
39 | 15, 21, 22, 14, 23, 18, 19, 20, 24, 25, 35, 38 | isisod 48771 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑝 ∈ (𝑋(Iso‘𝐷)𝑌)) |
40 | 14, 15, 18, 19, 20, 39 | brcici 17882 |
. . . 4
⊢ (((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) ∧ (𝑞 ∈ (𝑌𝐻𝑋) ∧ 𝑀 = (((𝑌𝐺𝑋)‘𝑞)(〈𝑍, (𝐹‘𝑌)〉𝑂(𝐹‘𝑋))𝑁))) → 𝑋( ≃𝑐 ‘𝐷)𝑌) |
41 | 13, 40 | rexlimddv 3167 |
. . 3
⊢ ((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) → 𝑋( ≃𝑐 ‘𝐷)𝑌) |
42 | 6, 41 | rexlimddv 3167 |
. 2
⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐷)𝑌) |
43 | 13, 39 | rexlimddv 3167 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) → 𝑝 ∈ (𝑋(Iso‘𝐷)𝑌)) |
44 | | simprr 772 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ (𝑋𝐻𝑌) ∧ 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) → 𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
45 | 6, 43, 44 | reximssdv 3179 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
46 | | fveq2 6924 |
. . . . . 6
⊢ (𝑝 = 𝑟 → ((𝑋𝐺𝑌)‘𝑝) = ((𝑋𝐺𝑌)‘𝑟)) |
47 | 46 | oveq1d 7467 |
. . . . 5
⊢ (𝑝 = 𝑟 → (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
48 | 47 | eqeq2d 2751 |
. . . 4
⊢ (𝑝 = 𝑟 → (𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |
49 | 48 | cbvrexvw 3244 |
. . 3
⊢
(∃𝑝 ∈
(𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑝)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀) ↔ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
50 | 45, 49 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀)) |
51 | 42, 50 | jca 511 |
1
⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐷)𝑌 ∧ ∃𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑍, (𝐹‘𝑋)〉𝑂(𝐹‘𝑌))𝑀))) |