![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfii | Structured version Visualization version GIF version |
Description: The Principle of Well-Ordered Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfi.1 | ⊢ 𝑅 We 𝐴 |
wfi.2 | ⊢ 𝑅 Se 𝐴 |
Ref | Expression |
---|---|
wfii | ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfi.1 | . 2 ⊢ 𝑅 We 𝐴 | |
2 | wfi.2 | . 2 ⊢ 𝑅 Se 𝐴 | |
3 | wfi 6379 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | |
4 | 1, 2, 3 | mpanl12 702 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3966 Se wse 5643 We wwe 5644 Predcpred 6328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |