MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis3 Structured version   Visualization version   GIF version

Theorem wfis3 6359
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis3.1 𝑅 We 𝐴
wfis3.2 𝑅 Se 𝐴
wfis3.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis3.4 (𝑦 = 𝐵 → (𝜑𝜒))
wfis3.5 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis3 (𝐵𝐴𝜒)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵   𝜒,𝑦   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)   𝜒(𝑧)   𝐵(𝑧)

Proof of Theorem wfis3
StepHypRef Expression
1 wfis3.4 . 2 (𝑦 = 𝐵 → (𝜑𝜒))
2 wfis3.1 . . 3 𝑅 We 𝐴
3 wfis3.2 . . 3 𝑅 Se 𝐴
4 wfis3.3 . . 3 (𝑦 = 𝑧 → (𝜑𝜓))
5 wfis3.5 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
62, 3, 4, 5wfis2 6358 . 2 (𝑦𝐴𝜑)
71, 6vtoclga 3565 1 (𝐵𝐴𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3061   Se wse 5628   We wwe 5629  Predcpred 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297
This theorem is referenced by:  omsinds  7872  omsindsOLD  7873  uzsinds  13948
  Copyright terms: Public domain W3C validator