![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis3 | Structured version Visualization version GIF version |
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis3.1 | ⊢ 𝑅 We 𝐴 |
wfis3.2 | ⊢ 𝑅 Se 𝐴 |
wfis3.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis3.4 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) |
wfis3.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis3 | ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis3.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | |
2 | wfis3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
3 | wfis3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
4 | wfis3.3 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
5 | wfis3.5 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
6 | 2, 3, 4, 5 | wfis2 6392 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
7 | 1, 6 | vtoclga 3589 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Se wse 5650 We wwe 5651 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: omsinds 7924 omsindsOLD 7925 uzsinds 14038 |
Copyright terms: Public domain | W3C validator |