|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > wfis3 | Structured version Visualization version GIF version | ||
| Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) | 
| Ref | Expression | 
|---|---|
| wfis3.1 | ⊢ 𝑅 We 𝐴 | 
| wfis3.2 | ⊢ 𝑅 Se 𝐴 | 
| wfis3.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | 
| wfis3.4 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | 
| wfis3.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | 
| Ref | Expression | 
|---|---|
| wfis3 | ⊢ (𝐵 ∈ 𝐴 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wfis3.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 2 | wfis3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
| 3 | wfis3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
| 4 | wfis3.3 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 5 | wfis3.5 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
| 6 | 2, 3, 4, 5 | wfis2 6380 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝜑) | 
| 7 | 1, 6 | vtoclga 3576 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Se wse 5634 We wwe 5635 Predcpred 6319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 | 
| This theorem is referenced by: omsinds 7909 uzsinds 14029 | 
| Copyright terms: Public domain | W3C validator |