MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis3 Structured version   Visualization version   GIF version

Theorem wfis3 6361
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis3.1 𝑅 We 𝐴
wfis3.2 𝑅 Se 𝐴
wfis3.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis3.4 (𝑦 = 𝐵 → (𝜑𝜒))
wfis3.5 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis3 (𝐵𝐴𝜒)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵   𝜒,𝑦   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)   𝜒(𝑧)   𝐵(𝑧)

Proof of Theorem wfis3
StepHypRef Expression
1 wfis3.4 . 2 (𝑦 = 𝐵 → (𝜑𝜒))
2 wfis3.1 . . 3 𝑅 We 𝐴
3 wfis3.2 . . 3 𝑅 Se 𝐴
4 wfis3.3 . . 3 (𝑦 = 𝑧 → (𝜑𝜓))
5 wfis3.5 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
62, 3, 4, 5wfis2 6360 . 2 (𝑦𝐴𝜑)
71, 6vtoclga 3562 1 (𝐵𝐴𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wral 3057   Se wse 5625   We wwe 5626  Predcpred 6298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299
This theorem is referenced by:  omsinds  7885  omsindsOLD  7886  uzsinds  13978
  Copyright terms: Public domain W3C validator