Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfis3 | Structured version Visualization version GIF version |
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis3.1 | ⊢ 𝑅 We 𝐴 |
wfis3.2 | ⊢ 𝑅 Se 𝐴 |
wfis3.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis3.4 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) |
wfis3.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis3 | ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis3.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | |
2 | wfis3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
3 | wfis3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
4 | wfis3.3 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
5 | wfis3.5 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
6 | 2, 3, 4, 5 | wfis2 6260 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
7 | 1, 6 | vtoclga 3511 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Se wse 5541 We wwe 5542 Predcpred 6198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 |
This theorem is referenced by: omsinds 7721 omsindsOLD 7722 uzsinds 13688 |
Copyright terms: Public domain | W3C validator |