Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfis3 | Structured version Visualization version GIF version |
Description: Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis3.1 | ⊢ 𝑅 We 𝐴 |
wfis3.2 | ⊢ 𝑅 Se 𝐴 |
wfis3.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis3.4 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) |
wfis3.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis3 | ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis3.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | |
2 | wfis3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
3 | wfis3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
4 | wfis3.3 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
5 | wfis3.5 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
6 | 2, 3, 4, 5 | wfis2 6170 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
7 | 1, 6 | vtoclga 3494 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Se wse 5484 We wwe 5485 Predcpred 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-cnv 5535 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 |
This theorem is referenced by: omsinds 7604 uzsinds 13409 |
Copyright terms: Public domain | W3C validator |