MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis3 Structured version   Visualization version   GIF version

Theorem wfis3 6261
Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis3.1 𝑅 We 𝐴
wfis3.2 𝑅 Se 𝐴
wfis3.3 (𝑦 = 𝑧 → (𝜑𝜓))
wfis3.4 (𝑦 = 𝐵 → (𝜑𝜒))
wfis3.5 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis3 (𝐵𝐴𝜒)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵   𝜒,𝑦   𝜑,𝑧   𝜓,𝑦   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑧)   𝜒(𝑧)   𝐵(𝑧)

Proof of Theorem wfis3
StepHypRef Expression
1 wfis3.4 . 2 (𝑦 = 𝐵 → (𝜑𝜒))
2 wfis3.1 . . 3 𝑅 We 𝐴
3 wfis3.2 . . 3 𝑅 Se 𝐴
4 wfis3.3 . . 3 (𝑦 = 𝑧 → (𝜑𝜓))
5 wfis3.5 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
62, 3, 4, 5wfis2 6260 . 2 (𝑦𝐴𝜑)
71, 6vtoclga 3511 1 (𝐵𝐴𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  wral 3065   Se wse 5541   We wwe 5542  Predcpred 6198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199
This theorem is referenced by:  omsinds  7721  omsindsOLD  7722  uzsinds  13688
  Copyright terms: Public domain W3C validator