Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xnegeq 12951 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 -𝑒cxne 12855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-iota 6384 df-fv 6434 df-ov 7270 df-neg 11218 df-xneg 12858 |
This theorem is referenced by: supminfxr 42985 supminfxr2 42990 supminfxrrnmpt 42992 monoord2xrv 43005 liminfvalxr 43305 liminfvalxrmpt 43308 liminfval4 43311 liminfval3 43312 limsupval4 43316 liminfvaluz2 43317 limsupvaluz4 43322 climliminflimsupd 43323 xlimpnfxnegmnf 43336 liminfpnfuz 43338 xlimpnfxnegmnf2 43380 smfliminflem 44341 |
Copyright terms: Public domain | W3C validator |