| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xnegeq 13116 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 -𝑒cxne 13018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-neg 11357 df-xneg 13021 |
| This theorem is referenced by: supminfxr 45576 supminfxr2 45581 supminfxrrnmpt 45583 monoord2xrv 45595 liminfvalxr 45895 liminfvalxrmpt 45898 liminfval4 45901 liminfval3 45902 limsupval4 45906 liminfvaluz2 45907 limsupvaluz4 45912 climliminflimsupd 45913 xlimpnfxnegmnf 45926 liminfpnfuz 45928 xlimpnfxnegmnf2 45970 smfliminflem 46942 |
| Copyright terms: Public domain | W3C validator |