| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xnegeq 13167 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 -𝑒cxne 13069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-xneg 13072 |
| This theorem is referenced by: supminfxr 45460 supminfxr2 45465 supminfxrrnmpt 45467 monoord2xrv 45479 liminfvalxr 45781 liminfvalxrmpt 45784 liminfval4 45787 liminfval3 45788 limsupval4 45792 liminfvaluz2 45793 limsupvaluz4 45798 climliminflimsupd 45799 xlimpnfxnegmnf 45812 liminfpnfuz 45814 xlimpnfxnegmnf2 45856 smfliminflem 46828 |
| Copyright terms: Public domain | W3C validator |