Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnegeqd Structured version   Visualization version   GIF version

Theorem xnegeqd 42867
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
xnegeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xnegeqd (𝜑 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeqd
StepHypRef Expression
1 xnegeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 xnegeq 12870 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
31, 2syl 17 1 (𝜑 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-neg 11138  df-xneg 12777
This theorem is referenced by:  supminfxr  42894  supminfxr2  42899  supminfxrrnmpt  42901  monoord2xrv  42914  liminfvalxr  43214  liminfvalxrmpt  43217  liminfval4  43220  liminfval3  43221  limsupval4  43225  liminfvaluz2  43226  limsupvaluz4  43231  climliminflimsupd  43232  xlimpnfxnegmnf  43245  liminfpnfuz  43247  xlimpnfxnegmnf2  43289  smfliminflem  44250
  Copyright terms: Public domain W3C validator