Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnegeqd Structured version   Visualization version   GIF version

Theorem xnegeqd 45549
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
xnegeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xnegeqd (𝜑 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeqd
StepHypRef Expression
1 xnegeqd.1 . 2 (𝜑𝐴 = 𝐵)
2 xnegeq 13116 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
31, 2syl 17 1 (𝜑 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  -𝑒cxne 13018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-neg 11357  df-xneg 13021
This theorem is referenced by:  supminfxr  45576  supminfxr2  45581  supminfxrrnmpt  45583  monoord2xrv  45595  liminfvalxr  45895  liminfvalxrmpt  45898  liminfval4  45901  liminfval3  45902  limsupval4  45906  liminfvaluz2  45907  limsupvaluz4  45912  climliminflimsupd  45913  xlimpnfxnegmnf  45926  liminfpnfuz  45928  xlimpnfxnegmnf2  45970  smfliminflem  46942
  Copyright terms: Public domain W3C validator