| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xnegeq 13223 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 -𝑒cxne 13125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-neg 11469 df-xneg 13128 |
| This theorem is referenced by: supminfxr 45491 supminfxr2 45496 supminfxrrnmpt 45498 monoord2xrv 45510 liminfvalxr 45812 liminfvalxrmpt 45815 liminfval4 45818 liminfval3 45819 limsupval4 45823 liminfvaluz2 45824 limsupvaluz4 45829 climliminflimsupd 45830 xlimpnfxnegmnf 45843 liminfpnfuz 45845 xlimpnfxnegmnf2 45887 smfliminflem 46859 |
| Copyright terms: Public domain | W3C validator |