| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xnegeq 13174 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 -𝑒cxne 13076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-neg 11415 df-xneg 13079 |
| This theorem is referenced by: supminfxr 45467 supminfxr2 45472 supminfxrrnmpt 45474 monoord2xrv 45486 liminfvalxr 45788 liminfvalxrmpt 45791 liminfval4 45794 liminfval3 45795 limsupval4 45799 liminfvaluz2 45800 limsupvaluz4 45805 climliminflimsupd 45806 xlimpnfxnegmnf 45819 liminfpnfuz 45821 xlimpnfxnegmnf2 45863 smfliminflem 46835 |
| Copyright terms: Public domain | W3C validator |