Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrlesupxr Structured version   Visualization version   GIF version

Theorem infxrlesupxr 44132
Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 44145. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infxrlesupxr.1 (𝜑𝐴 ⊆ ℝ*)
infxrlesupxr.2 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
infxrlesupxr (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem infxrlesupxr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 infxrlesupxr.2 . . 3 (𝜑𝐴 ≠ ∅)
2 n0 4345 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
32biimpi 215 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝑥𝐴)
5 infxrlesupxr.1 . . . . . . 7 (𝜑𝐴 ⊆ ℝ*)
65infxrcld 44085 . . . . . 6 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
76adantr 481 . . . . 5 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
85sselda 3981 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
95supxrcld 43781 . . . . . 6 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109adantr 481 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
115adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
12 simpr 485 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 infxrlb 13309 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
1411, 12, 13syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
15 eqid 2732 . . . . . 6 sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ*, < )
1611, 12, 15supxrubd 43787 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
177, 8, 10, 14, 16xrletrd 13137 . . . 4 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
1817ex 413 . . 3 (𝜑 → (𝑥𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )))
1918exlimdv 1936 . 2 (𝜑 → (∃𝑥 𝑥𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )))
204, 19mpd 15 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1781  wcel 2106  wne 2940  wss 3947  c0 4321   class class class wbr 5147  supcsup 9431  infcinf 9432  *cxr 11243   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  liminflelimsuplem  44477
  Copyright terms: Public domain W3C validator