![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrlesupxr | Structured version Visualization version GIF version |
Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 44145. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
infxrlesupxr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
infxrlesupxr.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
infxrlesupxr | ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrlesupxr.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | n0 4345 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
3 | 2 | biimpi 215 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
5 | infxrlesupxr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
6 | 5 | infxrcld 44085 | . . . . . 6 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
8 | 5 | sselda 3981 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
9 | 5 | supxrcld 43781 | . . . . . 6 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
11 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
12 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | infxrlb 13309 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
14 | 11, 12, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
15 | eqid 2732 | . . . . . 6 ⊢ sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ*, < ) | |
16 | 11, 12, 15 | supxrubd 43787 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < )) |
17 | 7, 8, 10, 14, 16 | xrletrd 13137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) |
18 | 17 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))) |
19 | 18 | exlimdv 1936 | . 2 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))) |
20 | 4, 19 | mpd 15 | 1 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 supcsup 9431 infcinf 9432 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: liminflelimsuplem 44477 |
Copyright terms: Public domain | W3C validator |