Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrlesupxr Structured version   Visualization version   GIF version

Theorem infxrlesupxr 45416
Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 45429. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infxrlesupxr.1 (𝜑𝐴 ⊆ ℝ*)
infxrlesupxr.2 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
infxrlesupxr (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem infxrlesupxr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 infxrlesupxr.2 . . 3 (𝜑𝐴 ≠ ∅)
2 n0 4306 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
32biimpi 216 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
41, 3syl 17 . 2 (𝜑 → ∃𝑥 𝑥𝐴)
5 infxrlesupxr.1 . . . . . . 7 (𝜑𝐴 ⊆ ℝ*)
65infxrcld 45369 . . . . . 6 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
85sselda 3937 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
95supxrcld 45085 . . . . . 6 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109adantr 480 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
115adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
12 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 infxrlb 13255 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
1411, 12, 13syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
15 eqid 2729 . . . . . 6 sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ*, < )
1611, 12, 15supxrubd 45091 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
177, 8, 10, 14, 16xrletrd 13082 . . . 4 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
1817ex 412 . . 3 (𝜑 → (𝑥𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )))
1918exlimdv 1933 . 2 (𝜑 → (∃𝑥 𝑥𝐴 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < )))
204, 19mpd 15 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  wss 3905  c0 4286   class class class wbr 5095  supcsup 9349  infcinf 9350  *cxr 11167   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368
This theorem is referenced by:  liminflelimsuplem  45757
  Copyright terms: Public domain W3C validator