| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfval4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of lim inf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfval4.x | ⊢ Ⅎ𝑥𝜑 |
| liminfval4.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| liminfval4.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| liminfval4.b | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| liminfval4 | ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfval4.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | liminfval4.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | inss1 4188 | . . . . . 6 ⊢ (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴) |
| 5 | 2, 4 | ssexd 5263 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ∈ V) |
| 6 | liminfval4.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ) | |
| 7 | 6 | rexrd 11165 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
| 8 | 1, 5, 7 | liminfvalxrmpt 45767 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵))) |
| 9 | 6 | rexnegd 45121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 = -𝐵) |
| 10 | 1, 9 | mpteq2da 5184 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)) |
| 11 | 10 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))) |
| 12 | 11 | xnegeqd 45416 | . . 3 ⊢ (𝜑 → -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))) |
| 13 | 8, 12 | eqtrd 2764 | . 2 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))) |
| 14 | liminfval4.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 15 | eqid 2729 | . . . 4 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
| 16 | 14, 15, 2 | liminfresicompt 45761 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 17 | 16 | eqcomd 2735 | . 2 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 18 | 2, 14, 15 | limsupresicompt 45737 | . . 3 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))) |
| 19 | 18 | xnegeqd 45416 | . 2 ⊢ (𝜑 → -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))) |
| 20 | 13, 17, 19 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 +∞cpnf 11146 -cneg 11348 -𝑒cxne 13011 [,)cico 13250 lim supclsp 15377 lim infclsi 45732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-xneg 13014 df-ico 13254 df-limsup 15378 df-liminf 45733 |
| This theorem is referenced by: smfliminflem 46811 |
| Copyright terms: Public domain | W3C validator |