Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval4 Structured version   Visualization version   GIF version

Theorem liminfval4 42959
Description: Alternate definition of lim inf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval4.x 𝑥𝜑
liminfval4.a (𝜑𝐴𝑉)
liminfval4.m (𝜑𝑀 ∈ ℝ)
liminfval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
liminfval4 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem liminfval4
StepHypRef Expression
1 liminfval4.x . . . 4 𝑥𝜑
2 liminfval4.a . . . . 5 (𝜑𝐴𝑉)
3 inss1 4133 . . . . . 6 (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴
43a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴)
52, 4ssexd 5206 . . . 4 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ∈ V)
6 liminfval4.b . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ)
76rexrd 10866 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
81, 5, 7liminfvalxrmpt 42956 . . 3 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)))
96rexnegd 42317 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 = -𝐵)
101, 9mpteq2da 5138 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))
1110fveq2d 6710 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
1211xnegeqd 42602 . . 3 (𝜑 → -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
138, 12eqtrd 2774 . 2 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
14 liminfval4.m . . . 4 (𝜑𝑀 ∈ ℝ)
15 eqid 2734 . . . 4 (𝑀[,)+∞) = (𝑀[,)+∞)
1614, 15, 2liminfresicompt 42950 . . 3 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim inf‘(𝑥𝐴𝐵)))
1716eqcomd 2740 . 2 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
182, 14, 15limsupresicompt 42926 . . 3 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
1918xnegeqd 42602 . 2 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
2013, 17, 193eqtr4d 2784 1 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  Vcvv 3401  cin 3856  wss 3857  cmpt 5124  cfv 6369  (class class class)co 7202  cr 10711  +∞cpnf 10847  -cneg 11046  -𝑒cxne 12684  [,)cico 12920  lim supclsp 15014  lim infclsi 42921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-xneg 12687  df-ico 12924  df-limsup 15015  df-liminf 42922
This theorem is referenced by:  smfliminflem  43989
  Copyright terms: Public domain W3C validator