Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval4 Structured version   Visualization version   GIF version

Theorem liminfval4 45770
Description: Alternate definition of lim inf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval4.x 𝑥𝜑
liminfval4.a (𝜑𝐴𝑉)
liminfval4.m (𝜑𝑀 ∈ ℝ)
liminfval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
liminfval4 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem liminfval4
StepHypRef Expression
1 liminfval4.x . . . 4 𝑥𝜑
2 liminfval4.a . . . . 5 (𝜑𝐴𝑉)
3 inss1 4188 . . . . . 6 (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴
43a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴)
52, 4ssexd 5263 . . . 4 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ∈ V)
6 liminfval4.b . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ)
76rexrd 11165 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
81, 5, 7liminfvalxrmpt 45767 . . 3 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)))
96rexnegd 45121 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 = -𝐵)
101, 9mpteq2da 5184 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵))
1110fveq2d 6826 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
1211xnegeqd 45416 . . 3 (𝜑 → -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
138, 12eqtrd 2764 . 2 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
14 liminfval4.m . . . 4 (𝜑𝑀 ∈ ℝ)
15 eqid 2729 . . . 4 (𝑀[,)+∞) = (𝑀[,)+∞)
1614, 15, 2liminfresicompt 45761 . . 3 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim inf‘(𝑥𝐴𝐵)))
1716eqcomd 2735 . 2 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
182, 14, 15limsupresicompt 45737 . . 3 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
1918xnegeqd 45416 . 2 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝐵)))
2013, 17, 193eqtr4d 2774 1 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  Vcvv 3436  cin 3902  wss 3903  cmpt 5173  cfv 6482  (class class class)co 7349  cr 11008  +∞cpnf 11146  -cneg 11348  -𝑒cxne 13011  [,)cico 13250  lim supclsp 15377  lim infclsi 45732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-xneg 13014  df-ico 13254  df-limsup 15378  df-liminf 45733
This theorem is referenced by:  smfliminflem  46811
  Copyright terms: Public domain W3C validator