Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfval3 Structured version   Visualization version   GIF version

Theorem liminfval3 41532
Description: Alternate definition of lim inf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfval3.x 𝑥𝜑
liminfval3.a (𝜑𝐴𝑉)
liminfval3.m (𝜑𝑀 ∈ ℝ)
liminfval3.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
liminfval3 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem liminfval3
StepHypRef Expression
1 liminfval3.x . . 3 𝑥𝜑
2 liminfval3.a . . . 4 (𝜑𝐴𝑉)
3 inss1 4087 . . . . 5 (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴
43a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ⊆ 𝐴)
52, 4ssexd 5081 . . 3 (𝜑 → (𝐴 ∩ (𝑀[,)+∞)) ∈ V)
6 liminfval3.b . . 3 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
71, 5, 6liminfvalxrmpt 41528 . 2 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)))
8 liminfval3.m . . . 4 (𝜑𝑀 ∈ ℝ)
9 eqid 2773 . . . 4 (𝑀[,)+∞) = (𝑀[,)+∞)
108, 9, 2liminfresicompt 41522 . . 3 (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim inf‘(𝑥𝐴𝐵)))
1110eqcomd 2779 . 2 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = (lim inf‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
122, 8, 9limsupresicompt 41498 . . 3 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)))
1312xnegeqd 41172 . 2 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒𝐵)))
147, 11, 133eqtr4d 2819 1 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wnf 1747  wcel 2051  Vcvv 3410  cin 3823  wss 3824  cmpt 5005  cfv 6186  (class class class)co 6975  cr 10333  +∞cpnf 10470  *cxr 10472  -𝑒cxne 12320  [,)cico 12555  lim supclsp 14687  lim infclsi 41493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-inf 8701  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-xneg 12323  df-ico 12559  df-limsup 14688  df-liminf 41494
This theorem is referenced by:  liminfvaluz  41534  liminf0  41535  limsupval4  41536
  Copyright terms: Public domain W3C validator