| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsupd | Structured version Visualization version GIF version | ||
| Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climliminflimsupd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climliminflimsupd.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climliminflimsupd.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climliminflimsupd.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| climliminflimsupd | ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climliminflimsupd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 2 | 1 | feqmptd 6958 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 3 | 2 | fveq2d 6891 | . . . . 5 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
| 4 | climliminflimsupd.2 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 4 | fvexi 6901 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 7226 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
| 7 | liminfcl 45723 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ* |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) |
| 10 | 3, 9 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
| 11 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 12 | climliminflimsupd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | 1 | ffvelcdmda 7085 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 14 | 13 | renegcld 11673 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
| 15 | 11, 12, 4, 14 | limsupvaluz4 45760 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
| 16 | climrel 15511 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
| 17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel ⇝ ) |
| 18 | nfcv 2897 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝐹 | |
| 19 | climliminflimsupd.4 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 20 | 12, 4, 1 | climlimsup 45720 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 21 | 19, 20 | mpbid 232 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| 22 | 13 | recnd 11272 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 23 | 11, 18, 4, 12, 21, 22 | climneg 45570 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
| 24 | releldm 5937 | . . . . . . . . 9 ⊢ ((Rel ⇝ ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
| 26 | 14 | fmpttd 7116 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
| 27 | 12, 4, 26 | climlimsup 45720 | . . . . . . . 8 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
| 28 | 25, 27 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
| 29 | climuni 15571 | . . . . . . 7 ⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) | |
| 30 | 28, 23, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
| 31 | 22 | negnegd 11594 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
| 32 | 31 | mpteq2dva 5224 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 33 | 32, 2 | eqtr4d 2772 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
| 34 | 33 | fveq2d 6891 | . . . . . . 7 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
| 35 | 34 | xnegeqd 45393 | . . . . . 6 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim inf‘𝐹)) |
| 36 | 15, 30, 35 | 3eqtr3d 2777 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹)) |
| 37 | 4, 12, 21, 13 | climrecl 15602 | . . . . . 6 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| 38 | 37 | renegcld 11673 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) ∈ ℝ) |
| 39 | 36, 38 | eqeltrrd 2834 | . . . 4 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ) |
| 40 | xnegrecl2 45416 | . . . 4 ⊢ (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ) | |
| 41 | 10, 39, 40 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| 42 | 41 | recnd 11272 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℂ) |
| 43 | 37 | recnd 11272 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℂ) |
| 44 | 41 | rexnegd 45093 | . . 3 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹)) |
| 45 | 36, 44 | eqtr2d 2770 | . 2 ⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
| 46 | 42, 43, 45 | neg11d 11615 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 class class class wbr 5125 ↦ cmpt 5207 dom cdm 5667 Rel wrel 5672 ⟶wf 6538 ‘cfv 6542 ℝcr 11137 ℝ*cxr 11277 -cneg 11476 ℤcz 12597 ℤ≥cuz 12861 -𝑒cxne 13134 lim supclsp 15489 ⇝ cli 15503 lim infclsi 45711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-z 12598 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-ico 13376 df-fl 13815 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-liminf 45712 |
| This theorem is referenced by: climliminf 45766 climliminflimsup 45768 climliminflimsup2 45769 xlimliminflimsup 45822 |
| Copyright terms: Public domain | W3C validator |