Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsupd | Structured version Visualization version GIF version |
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminflimsupd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climliminflimsupd.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climliminflimsupd.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climliminflimsupd.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climliminflimsupd | ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsupd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
2 | 1 | feqmptd 6831 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
3 | 2 | fveq2d 6772 | . . . . 5 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
4 | climliminflimsupd.2 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | fvexi 6782 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
6 | 5 | mptex 7093 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
7 | liminfcl 43258 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ* |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) |
10 | 3, 9 | eqeltrd 2840 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
11 | nfv 1920 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
12 | climliminflimsupd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 1 | ffvelrnda 6955 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
14 | 13 | renegcld 11385 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
15 | 11, 12, 4, 14 | limsupvaluz4 43295 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
16 | climrel 15182 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel ⇝ ) |
18 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝐹 | |
19 | climliminflimsupd.4 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
20 | 12, 4, 1 | climlimsup 43255 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
21 | 19, 20 | mpbid 231 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
22 | 13 | recnd 10987 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
23 | 11, 18, 4, 12, 21, 22 | climneg 43105 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
24 | releldm 5850 | . . . . . . . . 9 ⊢ ((Rel ⇝ ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) | |
25 | 17, 23, 24 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
26 | 14 | fmpttd 6983 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
27 | 12, 4, 26 | climlimsup 43255 | . . . . . . . 8 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
28 | 25, 27 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
29 | climuni 15242 | . . . . . . 7 ⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) | |
30 | 28, 23, 29 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
31 | 22 | negnegd 11306 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
32 | 31 | mpteq2dva 5178 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
33 | 32, 2 | eqtr4d 2782 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
34 | 33 | fveq2d 6772 | . . . . . . 7 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
35 | 34 | xnegeqd 42931 | . . . . . 6 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim inf‘𝐹)) |
36 | 15, 30, 35 | 3eqtr3d 2787 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹)) |
37 | 4, 12, 21, 13 | climrecl 15273 | . . . . . 6 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
38 | 37 | renegcld 11385 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) ∈ ℝ) |
39 | 36, 38 | eqeltrrd 2841 | . . . 4 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ) |
40 | xnegrecl2 42954 | . . . 4 ⊢ (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ) | |
41 | 10, 39, 40 | syl2anc 583 | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
42 | 41 | recnd 10987 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℂ) |
43 | 37 | recnd 10987 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℂ) |
44 | 41 | rexnegd 42645 | . . 3 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹)) |
45 | 36, 44 | eqtr2d 2780 | . 2 ⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
46 | 42, 43, 45 | neg11d 11327 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ↦ cmpt 5161 dom cdm 5588 Rel wrel 5593 ⟶wf 6426 ‘cfv 6430 ℝcr 10854 ℝ*cxr 10992 -cneg 11189 ℤcz 12302 ℤ≥cuz 12564 -𝑒cxne 12827 lim supclsp 15160 ⇝ cli 15174 lim infclsi 43246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-ico 13067 df-fl 13493 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 df-rlim 15179 df-liminf 43247 |
This theorem is referenced by: climliminf 43301 climliminflimsup 43303 climliminflimsup2 43304 xlimliminflimsup 43357 |
Copyright terms: Public domain | W3C validator |