| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsupd | Structured version Visualization version GIF version | ||
| Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climliminflimsupd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climliminflimsupd.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climliminflimsupd.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climliminflimsupd.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| climliminflimsupd | ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climliminflimsupd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 2 | 1 | feqmptd 6936 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 3 | 2 | fveq2d 6869 | . . . . 5 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
| 4 | climliminflimsupd.2 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 4 | fvexi 6879 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 7204 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
| 7 | liminfcl 45734 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ* |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) |
| 10 | 3, 9 | eqeltrd 2829 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
| 11 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 12 | climliminflimsupd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | 1 | ffvelcdmda 7063 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 14 | 13 | renegcld 11621 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
| 15 | 11, 12, 4, 14 | limsupvaluz4 45771 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
| 16 | climrel 15465 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
| 17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel ⇝ ) |
| 18 | nfcv 2893 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝐹 | |
| 19 | climliminflimsupd.4 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 20 | 12, 4, 1 | climlimsup 45731 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 21 | 19, 20 | mpbid 232 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| 22 | 13 | recnd 11220 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 23 | 11, 18, 4, 12, 21, 22 | climneg 45581 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
| 24 | releldm 5916 | . . . . . . . . 9 ⊢ ((Rel ⇝ ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
| 26 | 14 | fmpttd 7094 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
| 27 | 12, 4, 26 | climlimsup 45731 | . . . . . . . 8 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
| 28 | 25, 27 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
| 29 | climuni 15525 | . . . . . . 7 ⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) | |
| 30 | 28, 23, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
| 31 | 22 | negnegd 11542 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
| 32 | 31 | mpteq2dva 5208 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 33 | 32, 2 | eqtr4d 2768 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
| 34 | 33 | fveq2d 6869 | . . . . . . 7 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
| 35 | 34 | xnegeqd 45406 | . . . . . 6 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim inf‘𝐹)) |
| 36 | 15, 30, 35 | 3eqtr3d 2773 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹)) |
| 37 | 4, 12, 21, 13 | climrecl 15556 | . . . . . 6 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| 38 | 37 | renegcld 11621 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) ∈ ℝ) |
| 39 | 36, 38 | eqeltrrd 2830 | . . . 4 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ) |
| 40 | xnegrecl2 45429 | . . . 4 ⊢ (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ) | |
| 41 | 10, 39, 40 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| 42 | 41 | recnd 11220 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℂ) |
| 43 | 37 | recnd 11220 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℂ) |
| 44 | 41 | rexnegd 45109 | . . 3 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹)) |
| 45 | 36, 44 | eqtr2d 2766 | . 2 ⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
| 46 | 42, 43, 45 | neg11d 11563 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 ↦ cmpt 5196 dom cdm 5646 Rel wrel 5651 ⟶wf 6515 ‘cfv 6519 ℝcr 11085 ℝ*cxr 11225 -cneg 11424 ℤcz 12545 ℤ≥cuz 12809 -𝑒cxne 13082 lim supclsp 15443 ⇝ cli 15457 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-ico 13325 df-fl 13766 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-liminf 45723 |
| This theorem is referenced by: climliminf 45777 climliminflimsup 45779 climliminflimsup2 45780 xlimliminflimsup 45833 |
| Copyright terms: Public domain | W3C validator |