Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsupd | Structured version Visualization version GIF version |
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminflimsupd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climliminflimsupd.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climliminflimsupd.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climliminflimsupd.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climliminflimsupd | ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsupd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
2 | 1 | feqmptd 6869 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
3 | 2 | fveq2d 6808 | . . . . 5 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
4 | climliminflimsupd.2 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | fvexi 6818 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
6 | 5 | mptex 7131 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
7 | liminfcl 43353 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ* |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) |
10 | 3, 9 | eqeltrd 2837 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
11 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
12 | climliminflimsupd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 1 | ffvelcdmda 6993 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
14 | 13 | renegcld 11448 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
15 | 11, 12, 4, 14 | limsupvaluz4 43390 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
16 | climrel 15246 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel ⇝ ) |
18 | nfcv 2905 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝐹 | |
19 | climliminflimsupd.4 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
20 | 12, 4, 1 | climlimsup 43350 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
21 | 19, 20 | mpbid 231 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
22 | 13 | recnd 11049 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
23 | 11, 18, 4, 12, 21, 22 | climneg 43200 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
24 | releldm 5865 | . . . . . . . . 9 ⊢ ((Rel ⇝ ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) | |
25 | 17, 23, 24 | syl2anc 585 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
26 | 14 | fmpttd 7021 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
27 | 12, 4, 26 | climlimsup 43350 | . . . . . . . 8 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
28 | 25, 27 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
29 | climuni 15306 | . . . . . . 7 ⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) | |
30 | 28, 23, 29 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
31 | 22 | negnegd 11369 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
32 | 31 | mpteq2dva 5181 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
33 | 32, 2 | eqtr4d 2779 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
34 | 33 | fveq2d 6808 | . . . . . . 7 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
35 | 34 | xnegeqd 43025 | . . . . . 6 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim inf‘𝐹)) |
36 | 15, 30, 35 | 3eqtr3d 2784 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹)) |
37 | 4, 12, 21, 13 | climrecl 15337 | . . . . . 6 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
38 | 37 | renegcld 11448 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) ∈ ℝ) |
39 | 36, 38 | eqeltrrd 2838 | . . . 4 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ) |
40 | xnegrecl2 43048 | . . . 4 ⊢ (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ) | |
41 | 10, 39, 40 | syl2anc 585 | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
42 | 41 | recnd 11049 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℂ) |
43 | 37 | recnd 11049 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℂ) |
44 | 41 | rexnegd 42730 | . . 3 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹)) |
45 | 36, 44 | eqtr2d 2777 | . 2 ⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
46 | 42, 43, 45 | neg11d 11390 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ↦ cmpt 5164 dom cdm 5600 Rel wrel 5605 ⟶wf 6454 ‘cfv 6458 ℝcr 10916 ℝ*cxr 11054 -cneg 11252 ℤcz 12365 ℤ≥cuz 12628 -𝑒cxne 12891 lim supclsp 15224 ⇝ cli 15238 lim infclsi 43341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-ico 13131 df-fl 13558 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-liminf 43342 |
This theorem is referenced by: climliminf 43396 climliminflimsup 43398 climliminflimsup2 43399 xlimliminflimsup 43452 |
Copyright terms: Public domain | W3C validator |