Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   GIF version

Theorem climliminflimsupd 45761
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1 (𝜑𝑀 ∈ ℤ)
climliminflimsupd.2 𝑍 = (ℤ𝑀)
climliminflimsupd.3 (𝜑𝐹:𝑍⟶ℝ)
climliminflimsupd.4 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climliminflimsupd (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))

Proof of Theorem climliminflimsupd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
21feqmptd 6958 . . . . . 6 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
32fveq2d 6891 . . . . 5 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
4 climliminflimsupd.2 . . . . . . . . 9 𝑍 = (ℤ𝑀)
54fvexi 6901 . . . . . . . 8 𝑍 ∈ V
65mptex 7226 . . . . . . 7 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
7 liminfcl 45723 . . . . . . 7 ((𝑘𝑍 ↦ (𝐹𝑘)) ∈ V → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
86, 7ax-mp 5 . . . . . 6 (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*
98a1i 11 . . . . 5 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
103, 9eqeltrd 2833 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 nfv 1913 . . . . . . 7 𝑘𝜑
12 climliminflimsupd.1 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
131ffvelcdmda 7085 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413renegcld 11673 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1511, 12, 4, 14limsupvaluz4 45760 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))))
16 climrel 15511 . . . . . . . . . 10 Rel ⇝
1716a1i 11 . . . . . . . . 9 (𝜑 → Rel ⇝ )
18 nfcv 2897 . . . . . . . . . 10 𝑘𝐹
19 climliminflimsupd.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ⇝ )
2012, 4, 1climlimsup 45720 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
2119, 20mpbid 232 . . . . . . . . . 10 (𝜑𝐹 ⇝ (lim sup‘𝐹))
2213recnd 11272 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2311, 18, 4, 12, 21, 22climneg 45570 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹))
24 releldm 5937 . . . . . . . . 9 ((Rel ⇝ ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2517, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2614fmpttd 7116 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
2712, 4, 26climlimsup 45720 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ ↔ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘)))))
2825, 27mpbid 232 . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
29 climuni 15571 . . . . . . 7 (((𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3028, 23, 29syl2anc 584 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3122negnegd 11594 . . . . . . . . . 10 ((𝜑𝑘𝑍) → --(𝐹𝑘) = (𝐹𝑘))
3231mpteq2dva 5224 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘)))
3332, 2eqtr4d 2772 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = 𝐹)
3433fveq2d 6891 . . . . . . 7 (𝜑 → (lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = (lim inf‘𝐹))
3534xnegeqd 45393 . . . . . 6 (𝜑 → -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = -𝑒(lim inf‘𝐹))
3615, 30, 353eqtr3d 2777 . . . . 5 (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹))
374, 12, 21, 13climrecl 15602 . . . . . 6 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
3837renegcld 11673 . . . . 5 (𝜑 → -(lim sup‘𝐹) ∈ ℝ)
3936, 38eqeltrrd 2834 . . . 4 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ)
40 xnegrecl2 45416 . . . 4 (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
4110, 39, 40syl2anc 584 . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
4241recnd 11272 . 2 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
4337recnd 11272 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
4441rexnegd 45093 . . 3 (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹))
4536, 44eqtr2d 2770 . 2 (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹))
4642, 43, 45neg11d 11615 1 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464   class class class wbr 5125  cmpt 5207  dom cdm 5667  Rel wrel 5672  wf 6538  cfv 6542  cr 11137  *cxr 11277  -cneg 11476  cz 12597  cuz 12861  -𝑒cxne 13134  lim supclsp 15489  cli 15503  lim infclsi 45711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-ico 13376  df-fl 13815  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-liminf 45712
This theorem is referenced by:  climliminf  45766  climliminflimsup  45768  climliminflimsup2  45769  xlimliminflimsup  45822
  Copyright terms: Public domain W3C validator