| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsupd | Structured version Visualization version GIF version | ||
| Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climliminflimsupd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climliminflimsupd.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climliminflimsupd.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climliminflimsupd.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| climliminflimsupd | ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climliminflimsupd.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 2 | 1 | feqmptd 6890 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 3 | 2 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)))) |
| 4 | climliminflimsupd.2 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 4 | fvexi 6836 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 7157 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V |
| 7 | liminfcl 45860 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ* |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) ∈ ℝ*) |
| 10 | 3, 9 | eqeltrd 2831 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
| 11 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 12 | climliminflimsupd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | 1 | ffvelcdmda 7017 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 14 | 13 | renegcld 11544 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -(𝐹‘𝑘) ∈ ℝ) |
| 15 | 11, 12, 4, 14 | limsupvaluz4 45897 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)))) |
| 16 | climrel 15399 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
| 17 | 16 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → Rel ⇝ ) |
| 18 | nfcv 2894 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝐹 | |
| 19 | climliminflimsupd.4 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 20 | 12, 4, 1 | climlimsup 45857 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) |
| 21 | 19, 20 | mpbid 232 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ (lim sup‘𝐹)) |
| 22 | 13 | recnd 11140 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 23 | 11, 18, 4, 12, 21, 22 | climneg 45709 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) |
| 24 | releldm 5883 | . . . . . . . . 9 ⊢ ((Rel ⇝ ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) | |
| 25 | 17, 23, 24 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ) |
| 26 | 14 | fmpttd 7048 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)):𝑍⟶ℝ) |
| 27 | 12, 4, 26 | climlimsup 45857 | . . . . . . . 8 ⊢ (𝜑 → ((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ∈ dom ⇝ ↔ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))))) |
| 28 | 25, 27 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) |
| 29 | climuni 15459 | . . . . . . 7 ⊢ (((𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) ∧ (𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) | |
| 30 | 28, 23, 29 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘))) = -(lim sup‘𝐹)) |
| 31 | 22 | negnegd 11463 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → --(𝐹‘𝑘) = (𝐹‘𝑘)) |
| 32 | 31 | mpteq2dva 5182 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘))) |
| 33 | 32, 2 | eqtr4d 2769 | . . . . . . . 8 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘)) = 𝐹) |
| 34 | 33 | fveq2d 6826 | . . . . . . 7 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = (lim inf‘𝐹)) |
| 35 | 34 | xnegeqd 45534 | . . . . . 6 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ --(𝐹‘𝑘))) = -𝑒(lim inf‘𝐹)) |
| 36 | 15, 30, 35 | 3eqtr3d 2774 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹)) |
| 37 | 4, 12, 21, 13 | climrecl 15490 | . . . . . 6 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| 38 | 37 | renegcld 11544 | . . . . 5 ⊢ (𝜑 → -(lim sup‘𝐹) ∈ ℝ) |
| 39 | 36, 38 | eqeltrrd 2832 | . . . 4 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ) |
| 40 | xnegrecl2 45557 | . . . 4 ⊢ (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ) | |
| 41 | 10, 39, 40 | syl2anc 584 | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| 42 | 41 | recnd 11140 | . 2 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℂ) |
| 43 | 37 | recnd 11140 | . 2 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℂ) |
| 44 | 41 | rexnegd 45239 | . . 3 ⊢ (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹)) |
| 45 | 36, 44 | eqtr2d 2767 | . 2 ⊢ (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹)) |
| 46 | 42, 43, 45 | neg11d 11484 | 1 ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 Rel wrel 5619 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 ℝ*cxr 11145 -cneg 11345 ℤcz 12468 ℤ≥cuz 12732 -𝑒cxne 13008 lim supclsp 15377 ⇝ cli 15391 lim infclsi 45848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-ico 13251 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-liminf 45849 |
| This theorem is referenced by: climliminf 45903 climliminflimsup 45905 climliminflimsup2 45906 xlimliminflimsup 45959 |
| Copyright terms: Public domain | W3C validator |