Step | Hyp | Ref
| Expression |
1 | | climliminflimsupd.3 |
. . . . . . 7
β’ (π β πΉ:πβΆβ) |
2 | 1 | feqmptd 6950 |
. . . . . 6
β’ (π β πΉ = (π β π β¦ (πΉβπ))) |
3 | 2 | fveq2d 6885 |
. . . . 5
β’ (π β (lim infβπΉ) = (lim infβ(π β π β¦ (πΉβπ)))) |
4 | | climliminflimsupd.2 |
. . . . . . . . 9
β’ π =
(β€β₯βπ) |
5 | 4 | fvexi 6895 |
. . . . . . . 8
β’ π β V |
6 | 5 | mptex 7216 |
. . . . . . 7
β’ (π β π β¦ (πΉβπ)) β V |
7 | | liminfcl 44964 |
. . . . . . 7
β’ ((π β π β¦ (πΉβπ)) β V β (lim infβ(π β π β¦ (πΉβπ))) β
β*) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
β’ (lim
infβ(π β π β¦ (πΉβπ))) β
β* |
9 | 8 | a1i 11 |
. . . . 5
β’ (π β (lim infβ(π β π β¦ (πΉβπ))) β
β*) |
10 | 3, 9 | eqeltrd 2825 |
. . . 4
β’ (π β (lim infβπΉ) β
β*) |
11 | | nfv 1909 |
. . . . . . 7
β’
β²ππ |
12 | | climliminflimsupd.1 |
. . . . . . 7
β’ (π β π β β€) |
13 | 1 | ffvelcdmda 7076 |
. . . . . . . 8
β’ ((π β§ π β π) β (πΉβπ) β β) |
14 | 13 | renegcld 11638 |
. . . . . . 7
β’ ((π β§ π β π) β -(πΉβπ) β β) |
15 | 11, 12, 4, 14 | limsupvaluz4 45001 |
. . . . . 6
β’ (π β (lim supβ(π β π β¦ -(πΉβπ))) = -π(lim
infβ(π β π β¦ --(πΉβπ)))) |
16 | | climrel 15433 |
. . . . . . . . . 10
β’ Rel
β |
17 | 16 | a1i 11 |
. . . . . . . . 9
β’ (π β Rel β
) |
18 | | nfcv 2895 |
. . . . . . . . . 10
β’
β²ππΉ |
19 | | climliminflimsupd.4 |
. . . . . . . . . . 11
β’ (π β πΉ β dom β ) |
20 | 12, 4, 1 | climlimsup 44961 |
. . . . . . . . . . 11
β’ (π β (πΉ β dom β β πΉ β (lim supβπΉ))) |
21 | 19, 20 | mpbid 231 |
. . . . . . . . . 10
β’ (π β πΉ β (lim supβπΉ)) |
22 | 13 | recnd 11239 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (πΉβπ) β β) |
23 | 11, 18, 4, 12, 21, 22 | climneg 44811 |
. . . . . . . . 9
β’ (π β (π β π β¦ -(πΉβπ)) β -(lim supβπΉ)) |
24 | | releldm 5933 |
. . . . . . . . 9
β’ ((Rel
β β§ (π β
π β¦ -(πΉβπ)) β -(lim supβπΉ)) β (π β π β¦ -(πΉβπ)) β dom β ) |
25 | 17, 23, 24 | syl2anc 583 |
. . . . . . . 8
β’ (π β (π β π β¦ -(πΉβπ)) β dom β ) |
26 | 14 | fmpttd 7106 |
. . . . . . . . 9
β’ (π β (π β π β¦ -(πΉβπ)):πβΆβ) |
27 | 12, 4, 26 | climlimsup 44961 |
. . . . . . . 8
β’ (π β ((π β π β¦ -(πΉβπ)) β dom β β (π β π β¦ -(πΉβπ)) β (lim supβ(π β π β¦ -(πΉβπ))))) |
28 | 25, 27 | mpbid 231 |
. . . . . . 7
β’ (π β (π β π β¦ -(πΉβπ)) β (lim supβ(π β π β¦ -(πΉβπ)))) |
29 | | climuni 15493 |
. . . . . . 7
β’ (((π β π β¦ -(πΉβπ)) β (lim supβ(π β π β¦ -(πΉβπ))) β§ (π β π β¦ -(πΉβπ)) β -(lim supβπΉ)) β (lim supβ(π β π β¦ -(πΉβπ))) = -(lim supβπΉ)) |
30 | 28, 23, 29 | syl2anc 583 |
. . . . . 6
β’ (π β (lim supβ(π β π β¦ -(πΉβπ))) = -(lim supβπΉ)) |
31 | 22 | negnegd 11559 |
. . . . . . . . . 10
β’ ((π β§ π β π) β --(πΉβπ) = (πΉβπ)) |
32 | 31 | mpteq2dva 5238 |
. . . . . . . . 9
β’ (π β (π β π β¦ --(πΉβπ)) = (π β π β¦ (πΉβπ))) |
33 | 32, 2 | eqtr4d 2767 |
. . . . . . . 8
β’ (π β (π β π β¦ --(πΉβπ)) = πΉ) |
34 | 33 | fveq2d 6885 |
. . . . . . 7
β’ (π β (lim infβ(π β π β¦ --(πΉβπ))) = (lim infβπΉ)) |
35 | 34 | xnegeqd 44632 |
. . . . . 6
β’ (π β -π(lim
infβ(π β π β¦ --(πΉβπ))) = -π(lim
infβπΉ)) |
36 | 15, 30, 35 | 3eqtr3d 2772 |
. . . . 5
β’ (π β -(lim supβπΉ) = -π(lim
infβπΉ)) |
37 | 4, 12, 21, 13 | climrecl 15524 |
. . . . . 6
β’ (π β (lim supβπΉ) β
β) |
38 | 37 | renegcld 11638 |
. . . . 5
β’ (π β -(lim supβπΉ) β
β) |
39 | 36, 38 | eqeltrrd 2826 |
. . . 4
β’ (π β -π(lim
infβπΉ) β
β) |
40 | | xnegrecl2 44655 |
. . . 4
β’ (((lim
infβπΉ) β
β* β§ -π(lim infβπΉ) β β) β (lim
infβπΉ) β
β) |
41 | 10, 39, 40 | syl2anc 583 |
. . 3
β’ (π β (lim infβπΉ) β
β) |
42 | 41 | recnd 11239 |
. 2
β’ (π β (lim infβπΉ) β
β) |
43 | 37 | recnd 11239 |
. 2
β’ (π β (lim supβπΉ) β
β) |
44 | 41 | rexnegd 44320 |
. . 3
β’ (π β -π(lim
infβπΉ) = -(lim
infβπΉ)) |
45 | 36, 44 | eqtr2d 2765 |
. 2
β’ (π β -(lim infβπΉ) = -(lim supβπΉ)) |
46 | 42, 43, 45 | neg11d 11580 |
1
β’ (π β (lim infβπΉ) = (lim supβπΉ)) |