Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   GIF version

Theorem climliminflimsupd 45799
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1 (𝜑𝑀 ∈ ℤ)
climliminflimsupd.2 𝑍 = (ℤ𝑀)
climliminflimsupd.3 (𝜑𝐹:𝑍⟶ℝ)
climliminflimsupd.4 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climliminflimsupd (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))

Proof of Theorem climliminflimsupd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
21feqmptd 6929 . . . . . 6 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
32fveq2d 6862 . . . . 5 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
4 climliminflimsupd.2 . . . . . . . . 9 𝑍 = (ℤ𝑀)
54fvexi 6872 . . . . . . . 8 𝑍 ∈ V
65mptex 7197 . . . . . . 7 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
7 liminfcl 45761 . . . . . . 7 ((𝑘𝑍 ↦ (𝐹𝑘)) ∈ V → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
86, 7ax-mp 5 . . . . . 6 (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*
98a1i 11 . . . . 5 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
103, 9eqeltrd 2828 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 nfv 1914 . . . . . . 7 𝑘𝜑
12 climliminflimsupd.1 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
131ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413renegcld 11605 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1511, 12, 4, 14limsupvaluz4 45798 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))))
16 climrel 15458 . . . . . . . . . 10 Rel ⇝
1716a1i 11 . . . . . . . . 9 (𝜑 → Rel ⇝ )
18 nfcv 2891 . . . . . . . . . 10 𝑘𝐹
19 climliminflimsupd.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ⇝ )
2012, 4, 1climlimsup 45758 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
2119, 20mpbid 232 . . . . . . . . . 10 (𝜑𝐹 ⇝ (lim sup‘𝐹))
2213recnd 11202 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2311, 18, 4, 12, 21, 22climneg 45608 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹))
24 releldm 5908 . . . . . . . . 9 ((Rel ⇝ ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2517, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2614fmpttd 7087 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
2712, 4, 26climlimsup 45758 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ ↔ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘)))))
2825, 27mpbid 232 . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
29 climuni 15518 . . . . . . 7 (((𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3028, 23, 29syl2anc 584 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3122negnegd 11524 . . . . . . . . . 10 ((𝜑𝑘𝑍) → --(𝐹𝑘) = (𝐹𝑘))
3231mpteq2dva 5200 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘)))
3332, 2eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = 𝐹)
3433fveq2d 6862 . . . . . . 7 (𝜑 → (lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = (lim inf‘𝐹))
3534xnegeqd 45433 . . . . . 6 (𝜑 → -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = -𝑒(lim inf‘𝐹))
3615, 30, 353eqtr3d 2772 . . . . 5 (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹))
374, 12, 21, 13climrecl 15549 . . . . . 6 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
3837renegcld 11605 . . . . 5 (𝜑 → -(lim sup‘𝐹) ∈ ℝ)
3936, 38eqeltrrd 2829 . . . 4 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ)
40 xnegrecl2 45456 . . . 4 (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
4110, 39, 40syl2anc 584 . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
4241recnd 11202 . 2 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
4337recnd 11202 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
4441rexnegd 45137 . . 3 (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹))
4536, 44eqtr2d 2765 . 2 (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹))
4642, 43, 45neg11d 11545 1 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  dom cdm 5638  Rel wrel 5643  wf 6507  cfv 6511  cr 11067  *cxr 11207  -cneg 11406  cz 12529  cuz 12793  -𝑒cxne 13069  lim supclsp 15436  cli 15450  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-ico 13312  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-liminf 45750
This theorem is referenced by:  climliminf  45804  climliminflimsup  45806  climliminflimsup2  45807  xlimliminflimsup  45860
  Copyright terms: Public domain W3C validator