Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   GIF version

Theorem climliminflimsupd 43296
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1 (𝜑𝑀 ∈ ℤ)
climliminflimsupd.2 𝑍 = (ℤ𝑀)
climliminflimsupd.3 (𝜑𝐹:𝑍⟶ℝ)
climliminflimsupd.4 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climliminflimsupd (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))

Proof of Theorem climliminflimsupd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
21feqmptd 6831 . . . . . 6 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
32fveq2d 6772 . . . . 5 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
4 climliminflimsupd.2 . . . . . . . . 9 𝑍 = (ℤ𝑀)
54fvexi 6782 . . . . . . . 8 𝑍 ∈ V
65mptex 7093 . . . . . . 7 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
7 liminfcl 43258 . . . . . . 7 ((𝑘𝑍 ↦ (𝐹𝑘)) ∈ V → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
86, 7ax-mp 5 . . . . . 6 (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*
98a1i 11 . . . . 5 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
103, 9eqeltrd 2840 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 nfv 1920 . . . . . . 7 𝑘𝜑
12 climliminflimsupd.1 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
131ffvelrnda 6955 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413renegcld 11385 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1511, 12, 4, 14limsupvaluz4 43295 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))))
16 climrel 15182 . . . . . . . . . 10 Rel ⇝
1716a1i 11 . . . . . . . . 9 (𝜑 → Rel ⇝ )
18 nfcv 2908 . . . . . . . . . 10 𝑘𝐹
19 climliminflimsupd.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ⇝ )
2012, 4, 1climlimsup 43255 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
2119, 20mpbid 231 . . . . . . . . . 10 (𝜑𝐹 ⇝ (lim sup‘𝐹))
2213recnd 10987 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2311, 18, 4, 12, 21, 22climneg 43105 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹))
24 releldm 5850 . . . . . . . . 9 ((Rel ⇝ ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2517, 23, 24syl2anc 583 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2614fmpttd 6983 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
2712, 4, 26climlimsup 43255 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ ↔ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘)))))
2825, 27mpbid 231 . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
29 climuni 15242 . . . . . . 7 (((𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3028, 23, 29syl2anc 583 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3122negnegd 11306 . . . . . . . . . 10 ((𝜑𝑘𝑍) → --(𝐹𝑘) = (𝐹𝑘))
3231mpteq2dva 5178 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘)))
3332, 2eqtr4d 2782 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = 𝐹)
3433fveq2d 6772 . . . . . . 7 (𝜑 → (lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = (lim inf‘𝐹))
3534xnegeqd 42931 . . . . . 6 (𝜑 → -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = -𝑒(lim inf‘𝐹))
3615, 30, 353eqtr3d 2787 . . . . 5 (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹))
374, 12, 21, 13climrecl 15273 . . . . . 6 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
3837renegcld 11385 . . . . 5 (𝜑 → -(lim sup‘𝐹) ∈ ℝ)
3936, 38eqeltrrd 2841 . . . 4 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ)
40 xnegrecl2 42954 . . . 4 (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
4110, 39, 40syl2anc 583 . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
4241recnd 10987 . 2 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
4337recnd 10987 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
4441rexnegd 42645 . . 3 (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹))
4536, 44eqtr2d 2780 . 2 (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹))
4642, 43, 45neg11d 11327 1 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430   class class class wbr 5078  cmpt 5161  dom cdm 5588  Rel wrel 5593  wf 6426  cfv 6430  cr 10854  *cxr 10992  -cneg 11189  cz 12302  cuz 12564  -𝑒cxne 12827  lim supclsp 15160  cli 15174  lim infclsi 43246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-ico 13067  df-fl 13493  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-liminf 43247
This theorem is referenced by:  climliminf  43301  climliminflimsup  43303  climliminflimsup2  43304  xlimliminflimsup  43357
  Copyright terms: Public domain W3C validator