Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsupd Structured version   Visualization version   GIF version

Theorem climliminflimsupd 45792
Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsupd.1 (𝜑𝑀 ∈ ℤ)
climliminflimsupd.2 𝑍 = (ℤ𝑀)
climliminflimsupd.3 (𝜑𝐹:𝑍⟶ℝ)
climliminflimsupd.4 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climliminflimsupd (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))

Proof of Theorem climliminflimsupd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 climliminflimsupd.3 . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
21feqmptd 6911 . . . . . 6 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
32fveq2d 6844 . . . . 5 (𝜑 → (lim inf‘𝐹) = (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))))
4 climliminflimsupd.2 . . . . . . . . 9 𝑍 = (ℤ𝑀)
54fvexi 6854 . . . . . . . 8 𝑍 ∈ V
65mptex 7179 . . . . . . 7 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
7 liminfcl 45754 . . . . . . 7 ((𝑘𝑍 ↦ (𝐹𝑘)) ∈ V → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
86, 7ax-mp 5 . . . . . 6 (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*
98a1i 11 . . . . 5 (𝜑 → (lim inf‘(𝑘𝑍 ↦ (𝐹𝑘))) ∈ ℝ*)
103, 9eqeltrd 2828 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
11 nfv 1914 . . . . . . 7 𝑘𝜑
12 climliminflimsupd.1 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
131ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1413renegcld 11581 . . . . . . 7 ((𝜑𝑘𝑍) → -(𝐹𝑘) ∈ ℝ)
1511, 12, 4, 14limsupvaluz4 45791 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))))
16 climrel 15434 . . . . . . . . . 10 Rel ⇝
1716a1i 11 . . . . . . . . 9 (𝜑 → Rel ⇝ )
18 nfcv 2891 . . . . . . . . . 10 𝑘𝐹
19 climliminflimsupd.4 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ⇝ )
2012, 4, 1climlimsup 45751 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹)))
2119, 20mpbid 232 . . . . . . . . . 10 (𝜑𝐹 ⇝ (lim sup‘𝐹))
2213recnd 11178 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2311, 18, 4, 12, 21, 22climneg 45601 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹))
24 releldm 5897 . . . . . . . . 9 ((Rel ⇝ ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2517, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ )
2614fmpttd 7069 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)):𝑍⟶ℝ)
2712, 4, 26climlimsup 45751 . . . . . . . 8 (𝜑 → ((𝑘𝑍 ↦ -(𝐹𝑘)) ∈ dom ⇝ ↔ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘)))))
2825, 27mpbid 232 . . . . . . 7 (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))))
29 climuni 15494 . . . . . . 7 (((𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) ∧ (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -(lim sup‘𝐹)) → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3028, 23, 29syl2anc 584 . . . . . 6 (𝜑 → (lim sup‘(𝑘𝑍 ↦ -(𝐹𝑘))) = -(lim sup‘𝐹))
3122negnegd 11500 . . . . . . . . . 10 ((𝜑𝑘𝑍) → --(𝐹𝑘) = (𝐹𝑘))
3231mpteq2dva 5195 . . . . . . . . 9 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘)))
3332, 2eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝑘𝑍 ↦ --(𝐹𝑘)) = 𝐹)
3433fveq2d 6844 . . . . . . 7 (𝜑 → (lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = (lim inf‘𝐹))
3534xnegeqd 45426 . . . . . 6 (𝜑 → -𝑒(lim inf‘(𝑘𝑍 ↦ --(𝐹𝑘))) = -𝑒(lim inf‘𝐹))
3615, 30, 353eqtr3d 2772 . . . . 5 (𝜑 → -(lim sup‘𝐹) = -𝑒(lim inf‘𝐹))
374, 12, 21, 13climrecl 15525 . . . . . 6 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
3837renegcld 11581 . . . . 5 (𝜑 → -(lim sup‘𝐹) ∈ ℝ)
3936, 38eqeltrrd 2829 . . . 4 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ)
40 xnegrecl2 45449 . . . 4 (((lim inf‘𝐹) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
4110, 39, 40syl2anc 584 . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
4241recnd 11178 . 2 (𝜑 → (lim inf‘𝐹) ∈ ℂ)
4337recnd 11178 . 2 (𝜑 → (lim sup‘𝐹) ∈ ℂ)
4441rexnegd 45130 . . 3 (𝜑 → -𝑒(lim inf‘𝐹) = -(lim inf‘𝐹))
4536, 44eqtr2d 2765 . 2 (𝜑 → -(lim inf‘𝐹) = -(lim sup‘𝐹))
4642, 43, 45neg11d 11521 1 (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  Rel wrel 5636  wf 6495  cfv 6499  cr 11043  *cxr 11183  -cneg 11382  cz 12505  cuz 12769  -𝑒cxne 13045  lim supclsp 15412  cli 15426  lim infclsi 45742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-ico 13288  df-fl 13730  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-liminf 45743
This theorem is referenced by:  climliminf  45797  climliminflimsup  45799  climliminflimsup2  45800  xlimliminflimsup  45853
  Copyright terms: Public domain W3C validator