| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluz4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupvaluz4.k | ⊢ Ⅎ𝑘𝜑 |
| limsupvaluz4.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| limsupvaluz4.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| limsupvaluz4.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| limsupvaluz4 | ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupvaluz4.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | limsupvaluz4.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | limsupvaluz4.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | limsupvaluz4.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 5 | 4 | rexrd 11230 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
| 6 | 1, 2, 3, 5 | limsupvaluz3 45789 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
| 7 | 4 | rexnegd 45130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒𝐵 = -𝐵) |
| 8 | 1, 7 | mpteq2da 5201 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -𝑒𝐵) = (𝑘 ∈ 𝑍 ↦ -𝐵)) |
| 9 | 8 | fveq2d 6864 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = (lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
| 10 | 9 | xnegeqd 45426 | . 2 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
| 11 | 6, 10 | eqtrd 2765 | 1 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ↦ cmpt 5190 ‘cfv 6513 ℝcr 11073 -cneg 11412 ℤcz 12535 ℤ≥cuz 12799 -𝑒cxne 13075 lim supclsp 15442 lim infclsi 45742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-xneg 13078 df-ico 13318 df-limsup 15443 df-liminf 45743 |
| This theorem is referenced by: climliminflimsupd 45792 |
| Copyright terms: Public domain | W3C validator |