Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluz4 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupvaluz4.k | ⊢ Ⅎ𝑘𝜑 |
limsupvaluz4.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupvaluz4.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupvaluz4.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
limsupvaluz4 | ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluz4.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | limsupvaluz4.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupvaluz4.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | limsupvaluz4.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 11075 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
6 | 1, 2, 3, 5 | limsupvaluz3 43568 | . 2 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
7 | 4 | rexnegd 42906 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒𝐵 = -𝐵) |
8 | 1, 7 | mpteq2da 5179 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -𝑒𝐵) = (𝑘 ∈ 𝑍 ↦ -𝐵)) |
9 | 8 | fveq2d 6808 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = (lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
10 | 9 | xnegeqd 43205 | . 2 ⊢ (𝜑 → -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
11 | 6, 10 | eqtrd 2776 | 1 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ↦ cmpt 5164 ‘cfv 6458 ℝcr 10920 -cneg 11256 ℤcz 12369 ℤ≥cuz 12632 -𝑒cxne 12895 lim supclsp 15228 lim infclsi 43521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9249 df-inf 9250 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-xneg 12898 df-ico 13135 df-limsup 15229 df-liminf 43522 |
This theorem is referenced by: climliminflimsupd 43571 |
Copyright terms: Public domain | W3C validator |