Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxrmpt Structured version   Visualization version   GIF version

Theorem liminfvalxrmpt 45782
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxrmpt.1 𝑥𝜑
liminfvalxrmpt.2 (𝜑𝐴𝑉)
liminfvalxrmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
liminfvalxrmpt (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxrmpt
StepHypRef Expression
1 nfmpt1 5225 . . 3 𝑥(𝑥𝐴𝐵)
2 liminfvalxrmpt.2 . . 3 (𝜑𝐴𝑉)
3 liminfvalxrmpt.1 . . . 4 𝑥𝜑
4 liminfvalxrmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45226 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5liminfvalxr 45779 . 2 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))))
7 eqidd 2737 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
87, 4fvmpt2d 7004 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
98xnegeqd 45431 . . . . 5 ((𝜑𝑥𝐴) → -𝑒((𝑥𝐴𝐵)‘𝑥) = -𝑒𝐵)
103, 9mpteq2da 5218 . . . 4 (𝜑 → (𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥)) = (𝑥𝐴 ↦ -𝑒𝐵))
1110fveq2d 6885 . . 3 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))) = (lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
1211xnegeqd 45431 . 2 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
136, 12eqtrd 2771 1 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  cmpt 5206  cfv 6536  *cxr 11273  -𝑒cxne 13130  lim supclsp 15491  lim infclsi 45747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-xneg 13133  df-limsup 15492  df-liminf 45748
This theorem is referenced by:  liminfval4  45785  liminfval3  45786
  Copyright terms: Public domain W3C validator