![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvalxrmpt | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfvalxrmpt.1 | ⊢ Ⅎ𝑥𝜑 |
liminfvalxrmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
liminfvalxrmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
liminfvalxrmpt | ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5021 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | liminfvalxrmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | liminfvalxrmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | liminfvalxrmpt.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
5 | 3, 4 | fmptd2f 40967 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ*) |
6 | 1, 2, 5 | liminfvalxr 41529 | . 2 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)))) |
7 | eqidd 2772 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
8 | 7, 4 | fvmpt2d 6605 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 8 | xnegeqd 41176 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝑒((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = -𝑒𝐵) |
10 | 3, 9 | mpteq2da 5017 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝑒((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) = (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
11 | 10 | fveq2d 6500 | . . 3 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
12 | 11 | xnegeqd 41176 | . 2 ⊢ (𝜑 → -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
13 | 6, 12 | eqtrd 2807 | 1 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 Ⅎwnf 1747 ∈ wcel 2051 ↦ cmpt 5004 ‘cfv 6185 ℝ*cxr 10471 -𝑒cxne 12319 lim supclsp 14686 lim infclsi 41497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-xneg 12322 df-limsup 14687 df-liminf 41498 |
This theorem is referenced by: liminfval4 41535 liminfval3 41536 |
Copyright terms: Public domain | W3C validator |