Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxrmpt Structured version   Visualization version   GIF version

Theorem liminfvalxrmpt 45824
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxrmpt.1 𝑥𝜑
liminfvalxrmpt.2 (𝜑𝐴𝑉)
liminfvalxrmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
liminfvalxrmpt (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxrmpt
StepHypRef Expression
1 nfmpt1 5185 . . 3 𝑥(𝑥𝐴𝐵)
2 liminfvalxrmpt.2 . . 3 (𝜑𝐴𝑉)
3 liminfvalxrmpt.1 . . . 4 𝑥𝜑
4 liminfvalxrmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45272 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5liminfvalxr 45821 . 2 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))))
7 eqidd 2732 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
87, 4fvmpt2d 6937 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
98xnegeqd 45475 . . . . 5 ((𝜑𝑥𝐴) → -𝑒((𝑥𝐴𝐵)‘𝑥) = -𝑒𝐵)
103, 9mpteq2da 5178 . . . 4 (𝜑 → (𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥)) = (𝑥𝐴 ↦ -𝑒𝐵))
1110fveq2d 6821 . . 3 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))) = (lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
1211xnegeqd 45475 . 2 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒((𝑥𝐴𝐵)‘𝑥))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
136, 12eqtrd 2766 1 (𝜑 → (lim inf‘(𝑥𝐴𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  cmpt 5167  cfv 6476  *cxr 11140  -𝑒cxne 13003  lim supclsp 15372  lim infclsi 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-xneg 13006  df-limsup 15373  df-liminf 45790
This theorem is referenced by:  liminfval4  45827  liminfval3  45828
  Copyright terms: Public domain W3C validator