![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvalxrmpt | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf when πΉ is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfvalxrmpt.1 | β’ β²π₯π |
liminfvalxrmpt.2 | β’ (π β π΄ β π) |
liminfvalxrmpt.3 | β’ ((π β§ π₯ β π΄) β π΅ β β*) |
Ref | Expression |
---|---|
liminfvalxrmpt | β’ (π β (lim infβ(π₯ β π΄ β¦ π΅)) = -π(lim supβ(π₯ β π΄ β¦ -ππ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5257 | . . 3 β’ β²π₯(π₯ β π΄ β¦ π΅) | |
2 | liminfvalxrmpt.2 | . . 3 β’ (π β π΄ β π) | |
3 | liminfvalxrmpt.1 | . . . 4 β’ β²π₯π | |
4 | liminfvalxrmpt.3 | . . . 4 β’ ((π β§ π₯ β π΄) β π΅ β β*) | |
5 | 3, 4 | fmptd2f 44237 | . . 3 β’ (π β (π₯ β π΄ β¦ π΅):π΄βΆβ*) |
6 | 1, 2, 5 | liminfvalxr 44799 | . 2 β’ (π β (lim infβ(π₯ β π΄ β¦ π΅)) = -π(lim supβ(π₯ β π΄ β¦ -π((π₯ β π΄ β¦ π΅)βπ₯)))) |
7 | eqidd 2731 | . . . . . . 7 β’ (π β (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅)) | |
8 | 7, 4 | fvmpt2d 7012 | . . . . . 6 β’ ((π β§ π₯ β π΄) β ((π₯ β π΄ β¦ π΅)βπ₯) = π΅) |
9 | 8 | xnegeqd 44447 | . . . . 5 β’ ((π β§ π₯ β π΄) β -π((π₯ β π΄ β¦ π΅)βπ₯) = -ππ΅) |
10 | 3, 9 | mpteq2da 5247 | . . . 4 β’ (π β (π₯ β π΄ β¦ -π((π₯ β π΄ β¦ π΅)βπ₯)) = (π₯ β π΄ β¦ -ππ΅)) |
11 | 10 | fveq2d 6896 | . . 3 β’ (π β (lim supβ(π₯ β π΄ β¦ -π((π₯ β π΄ β¦ π΅)βπ₯))) = (lim supβ(π₯ β π΄ β¦ -ππ΅))) |
12 | 11 | xnegeqd 44447 | . 2 β’ (π β -π(lim supβ(π₯ β π΄ β¦ -π((π₯ β π΄ β¦ π΅)βπ₯))) = -π(lim supβ(π₯ β π΄ β¦ -ππ΅))) |
13 | 6, 12 | eqtrd 2770 | 1 β’ (π β (lim infβ(π₯ β π΄ β¦ π΅)) = -π(lim supβ(π₯ β π΄ β¦ -ππ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β²wnf 1783 β wcel 2104 β¦ cmpt 5232 βcfv 6544 β*cxr 11253 -πcxne 13095 lim supclsp 15420 lim infclsi 44767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-xneg 13098 df-limsup 15421 df-liminf 44768 |
This theorem is referenced by: liminfval4 44805 liminfval3 44806 |
Copyright terms: Public domain | W3C validator |