| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsupval4.x | ⊢ Ⅎ𝑥𝜑 |
| limsupval4.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| limsupval4.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| limsupval4.b | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| limsupval4 | ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . . . . . . 8 ⊢ (𝑀[,)+∞) ∈ V | |
| 2 | 1 | inex2 5254 | . . . . . . 7 ⊢ (𝐴 ∩ (𝑀[,)+∞)) ∈ V |
| 3 | 2 | mptex 7157 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V |
| 4 | limsupcl 15380 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ* |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*) |
| 7 | 6 | xnegnegd 45488 | . . 3 ⊢ (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 8 | 7 | eqcomd 2737 | . 2 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 9 | limsupval4.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 10 | limsupval4.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
| 11 | eqid 2731 | . . 3 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
| 12 | 9, 10, 11 | limsupresicompt 45802 | . 2 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 13 | limsupval4.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 14 | limsupval4.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) | |
| 15 | 14 | xnegcld 13199 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*) |
| 16 | 13, 9, 10, 15 | liminfval3 45836 | . . . 4 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵))) |
| 17 | 9, 10, 11 | limsupresicompt 45802 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵))) |
| 18 | 14 | xnegnegd 45488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵) |
| 19 | 13, 18 | mpteq2da 5181 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) |
| 20 | 19 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 21 | 17, 20 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 22 | 21 | xnegeqd 45483 | . . . 4 ⊢ (𝜑 → -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 23 | 16, 22 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 24 | 23 | xnegeqd 45483 | . 2 ⊢ (𝜑 → -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
| 25 | 8, 12, 24 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 -𝑒cxne 13008 [,)cico 13247 lim supclsp 15377 lim infclsi 45797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-xneg 13011 df-ico 13251 df-limsup 15378 df-liminf 45798 |
| This theorem is referenced by: limsupvaluz3 45844 |
| Copyright terms: Public domain | W3C validator |