Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval4 Structured version   Visualization version   GIF version

Theorem limsupval4 43225
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval4.x 𝑥𝜑
limsupval4.a (𝜑𝐴𝑉)
limsupval4.m (𝜑𝑀 ∈ ℝ)
limsupval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupval4 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem limsupval4
StepHypRef Expression
1 ovex 7288 . . . . . . . 8 (𝑀[,)+∞) ∈ V
21inex2 5237 . . . . . . 7 (𝐴 ∩ (𝑀[,)+∞)) ∈ V
32mptex 7081 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V
4 limsupcl 15110 . . . . . 6 ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
53, 4ax-mp 5 . . . . 5 (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*
65a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
76xnegnegd 42872 . . 3 (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
87eqcomd 2744 . 2 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
9 limsupval4.a . . 3 (𝜑𝐴𝑉)
10 limsupval4.m . . 3 (𝜑𝑀 ∈ ℝ)
11 eqid 2738 . . 3 (𝑀[,)+∞) = (𝑀[,)+∞)
129, 10, 11limsupresicompt 43187 . 2 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
13 limsupval4.x . . . . 5 𝑥𝜑
14 limsupval4.b . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
1514xnegcld 12963 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*)
1613, 9, 10, 15liminfval3 43221 . . . 4 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)))
179, 10, 11limsupresicompt 43187 . . . . . 6 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)))
1814xnegnegd 42872 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵)
1913, 18mpteq2da 5168 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))
2019fveq2d 6760 . . . . . 6 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2117, 20eqtrd 2778 . . . . 5 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2221xnegeqd 42867 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2316, 22eqtrd 2778 . . 3 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2423xnegeqd 42867 . 2 (𝜑 → -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
258, 12, 243eqtr4d 2788 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  Vcvv 3422  cin 3882  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  +∞cpnf 10937  *cxr 10939  -𝑒cxne 12774  [,)cico 13010  lim supclsp 15107  lim infclsi 43182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-xneg 12777  df-ico 13014  df-limsup 15108  df-liminf 43183
This theorem is referenced by:  limsupvaluz3  43229
  Copyright terms: Public domain W3C validator