Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval4 Structured version   Visualization version   GIF version

Theorem limsupval4 45840
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval4.x 𝑥𝜑
limsupval4.a (𝜑𝐴𝑉)
limsupval4.m (𝜑𝑀 ∈ ℝ)
limsupval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupval4 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem limsupval4
StepHypRef Expression
1 ovex 7379 . . . . . . . 8 (𝑀[,)+∞) ∈ V
21inex2 5254 . . . . . . 7 (𝐴 ∩ (𝑀[,)+∞)) ∈ V
32mptex 7157 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V
4 limsupcl 15380 . . . . . 6 ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
53, 4ax-mp 5 . . . . 5 (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*
65a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
76xnegnegd 45488 . . 3 (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
87eqcomd 2737 . 2 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
9 limsupval4.a . . 3 (𝜑𝐴𝑉)
10 limsupval4.m . . 3 (𝜑𝑀 ∈ ℝ)
11 eqid 2731 . . 3 (𝑀[,)+∞) = (𝑀[,)+∞)
129, 10, 11limsupresicompt 45802 . 2 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
13 limsupval4.x . . . . 5 𝑥𝜑
14 limsupval4.b . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
1514xnegcld 13199 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*)
1613, 9, 10, 15liminfval3 45836 . . . 4 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)))
179, 10, 11limsupresicompt 45802 . . . . . 6 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)))
1814xnegnegd 45488 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵)
1913, 18mpteq2da 5181 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))
2019fveq2d 6826 . . . . . 6 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2117, 20eqtrd 2766 . . . . 5 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2221xnegeqd 45483 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2316, 22eqtrd 2766 . . 3 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2423xnegeqd 45483 . 2 (𝜑 → -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
258, 12, 243eqtr4d 2776 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  Vcvv 3436  cin 3896  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  +∞cpnf 11143  *cxr 11145  -𝑒cxne 13008  [,)cico 13247  lim supclsp 15377  lim infclsi 45797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-xneg 13011  df-ico 13251  df-limsup 15378  df-liminf 45798
This theorem is referenced by:  limsupvaluz3  45844
  Copyright terms: Public domain W3C validator