Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval4 Structured version   Visualization version   GIF version

Theorem limsupval4 41937
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval4.x 𝑥𝜑
limsupval4.a (𝜑𝐴𝑉)
limsupval4.m (𝜑𝑀 ∈ ℝ)
limsupval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupval4 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem limsupval4
StepHypRef Expression
1 ovex 7184 . . . . . . . 8 (𝑀[,)+∞) ∈ V
21inex2 5218 . . . . . . 7 (𝐴 ∩ (𝑀[,)+∞)) ∈ V
32mptex 6984 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V
4 limsupcl 14823 . . . . . 6 ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
53, 4ax-mp 5 . . . . 5 (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*
65a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
76xnegnegd 41578 . . 3 (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
87eqcomd 2830 . 2 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
9 limsupval4.a . . 3 (𝜑𝐴𝑉)
10 limsupval4.m . . 3 (𝜑𝑀 ∈ ℝ)
11 eqid 2824 . . 3 (𝑀[,)+∞) = (𝑀[,)+∞)
129, 10, 11limsupresicompt 41899 . 2 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
13 limsupval4.x . . . . 5 𝑥𝜑
14 limsupval4.b . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
1514xnegcld 12686 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*)
1613, 9, 10, 15liminfval3 41933 . . . 4 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)))
179, 10, 11limsupresicompt 41899 . . . . . 6 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)))
1814xnegnegd 41578 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵)
1913, 18mpteq2da 5156 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))
2019fveq2d 6670 . . . . . 6 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2117, 20eqtrd 2860 . . . . 5 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2221xnegeqd 41573 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2316, 22eqtrd 2860 . . 3 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2423xnegeqd 41573 . 2 (𝜑 → -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
258, 12, 243eqtr4d 2870 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wnf 1777  wcel 2106  Vcvv 3499  cin 3938  cmpt 5142  cfv 6351  (class class class)co 7151  cr 10528  +∞cpnf 10664  *cxr 10666  -𝑒cxne 12497  [,)cico 12733  lim supclsp 14820  lim infclsi 41894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-xneg 12500  df-ico 12737  df-limsup 14821  df-liminf 41895
This theorem is referenced by:  limsupvaluz3  41941
  Copyright terms: Public domain W3C validator