Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval4 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupval4.x | ⊢ Ⅎ𝑥𝜑 |
limsupval4.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
limsupval4.m | ⊢ (𝜑 → 𝑀 ∈ ℝ) |
limsupval4.b | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
limsupval4 | ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7188 | . . . . . . . 8 ⊢ (𝑀[,)+∞) ∈ V | |
2 | 1 | inex2 5191 | . . . . . . 7 ⊢ (𝐴 ∩ (𝑀[,)+∞)) ∈ V |
3 | 2 | mptex 6982 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V |
4 | limsupcl 14883 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ* |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*) |
7 | 6 | xnegnegd 42473 | . . 3 ⊢ (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
8 | 7 | eqcomd 2764 | . 2 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
9 | limsupval4.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | limsupval4.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℝ) | |
11 | eqid 2758 | . . 3 ⊢ (𝑀[,)+∞) = (𝑀[,)+∞) | |
12 | 9, 10, 11 | limsupresicompt 42792 | . 2 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
13 | limsupval4.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
14 | limsupval4.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) | |
15 | 14 | xnegcld 12739 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*) |
16 | 13, 9, 10, 15 | liminfval3 42826 | . . . 4 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵))) |
17 | 9, 10, 11 | limsupresicompt 42792 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵))) |
18 | 14 | xnegnegd 42473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵) |
19 | 13, 18 | mpteq2da 5129 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) |
20 | 19 | fveq2d 6666 | . . . . . 6 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
21 | 17, 20 | eqtrd 2793 | . . . . 5 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
22 | 21 | xnegeqd 42468 | . . . 4 ⊢ (𝜑 → -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
23 | 16, 22 | eqtrd 2793 | . . 3 ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
24 | 23 | xnegeqd 42468 | . 2 ⊢ (𝜑 → -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))) |
25 | 8, 12, 24 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 Ⅎwnf 1785 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 ℝcr 10579 +∞cpnf 10715 ℝ*cxr 10717 -𝑒cxne 12550 [,)cico 12786 lim supclsp 14880 lim infclsi 42787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-q 12394 df-xneg 12553 df-ico 12790 df-limsup 14881 df-liminf 42788 |
This theorem is referenced by: limsupvaluz3 42834 |
Copyright terms: Public domain | W3C validator |