![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupval4 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupval4.x | β’ β²π₯π |
limsupval4.a | β’ (π β π΄ β π) |
limsupval4.m | β’ (π β π β β) |
limsupval4.b | β’ ((π β§ π₯ β (π΄ β© (π[,)+β))) β π΅ β β*) |
Ref | Expression |
---|---|
limsupval4 | β’ (π β (lim supβ(π₯ β π΄ β¦ π΅)) = -π(lim infβ(π₯ β π΄ β¦ -ππ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7442 | . . . . . . . 8 β’ (π[,)+β) β V | |
2 | 1 | inex2 5319 | . . . . . . 7 β’ (π΄ β© (π[,)+β)) β V |
3 | 2 | mptex 7225 | . . . . . 6 β’ (π₯ β (π΄ β© (π[,)+β)) β¦ π΅) β V |
4 | limsupcl 15417 | . . . . . 6 β’ ((π₯ β (π΄ β© (π[,)+β)) β¦ π΅) β V β (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) β β*) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 β’ (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) β β* |
6 | 5 | a1i 11 | . . . 4 β’ (π β (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) β β*) |
7 | 6 | xnegnegd 44152 | . . 3 β’ (π β -π-π(lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) = (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
8 | 7 | eqcomd 2739 | . 2 β’ (π β (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) = -π-π(lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
9 | limsupval4.a | . . 3 β’ (π β π΄ β π) | |
10 | limsupval4.m | . . 3 β’ (π β π β β) | |
11 | eqid 2733 | . . 3 β’ (π[,)+β) = (π[,)+β) | |
12 | 9, 10, 11 | limsupresicompt 44472 | . 2 β’ (π β (lim supβ(π₯ β π΄ β¦ π΅)) = (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
13 | limsupval4.x | . . . . 5 β’ β²π₯π | |
14 | limsupval4.b | . . . . . 6 β’ ((π β§ π₯ β (π΄ β© (π[,)+β))) β π΅ β β*) | |
15 | 14 | xnegcld 13279 | . . . . 5 β’ ((π β§ π₯ β (π΄ β© (π[,)+β))) β -ππ΅ β β*) |
16 | 13, 9, 10, 15 | liminfval3 44506 | . . . 4 β’ (π β (lim infβ(π₯ β π΄ β¦ -ππ΅)) = -π(lim supβ(π₯ β π΄ β¦ -π-ππ΅))) |
17 | 9, 10, 11 | limsupresicompt 44472 | . . . . . 6 β’ (π β (lim supβ(π₯ β π΄ β¦ -π-ππ΅)) = (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ -π-ππ΅))) |
18 | 14 | xnegnegd 44152 | . . . . . . . 8 β’ ((π β§ π₯ β (π΄ β© (π[,)+β))) β -π-ππ΅ = π΅) |
19 | 13, 18 | mpteq2da 5247 | . . . . . . 7 β’ (π β (π₯ β (π΄ β© (π[,)+β)) β¦ -π-ππ΅) = (π₯ β (π΄ β© (π[,)+β)) β¦ π΅)) |
20 | 19 | fveq2d 6896 | . . . . . 6 β’ (π β (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ -π-ππ΅)) = (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
21 | 17, 20 | eqtrd 2773 | . . . . 5 β’ (π β (lim supβ(π₯ β π΄ β¦ -π-ππ΅)) = (lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
22 | 21 | xnegeqd 44147 | . . . 4 β’ (π β -π(lim supβ(π₯ β π΄ β¦ -π-ππ΅)) = -π(lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
23 | 16, 22 | eqtrd 2773 | . . 3 β’ (π β (lim infβ(π₯ β π΄ β¦ -ππ΅)) = -π(lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
24 | 23 | xnegeqd 44147 | . 2 β’ (π β -π(lim infβ(π₯ β π΄ β¦ -ππ΅)) = -π-π(lim supβ(π₯ β (π΄ β© (π[,)+β)) β¦ π΅))) |
25 | 8, 12, 24 | 3eqtr4d 2783 | 1 β’ (π β (lim supβ(π₯ β π΄ β¦ π΅)) = -π(lim infβ(π₯ β π΄ β¦ -ππ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β²wnf 1786 β wcel 2107 Vcvv 3475 β© cin 3948 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 βcr 11109 +βcpnf 11245 β*cxr 11247 -πcxne 13089 [,)cico 13326 lim supclsp 15414 lim infclsi 44467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-xneg 13092 df-ico 13330 df-limsup 15415 df-liminf 44468 |
This theorem is referenced by: limsupvaluz3 44514 |
Copyright terms: Public domain | W3C validator |