Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupval4 Structured version   Visualization version   GIF version

Theorem limsupval4 44961
Description: Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupval4.x 𝑥𝜑
limsupval4.a (𝜑𝐴𝑉)
limsupval4.m (𝜑𝑀 ∈ ℝ)
limsupval4.b ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupval4 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem limsupval4
StepHypRef Expression
1 ovex 7434 . . . . . . . 8 (𝑀[,)+∞) ∈ V
21inex2 5308 . . . . . . 7 (𝐴 ∩ (𝑀[,)+∞)) ∈ V
32mptex 7216 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V
4 limsupcl 15413 . . . . . 6 ((𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵) ∈ V → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
53, 4ax-mp 5 . . . . 5 (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*
65a1i 11 . . . 4 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) ∈ ℝ*)
76xnegnegd 44603 . . 3 (𝜑 → -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
87eqcomd 2730 . 2 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
9 limsupval4.a . . 3 (𝜑𝐴𝑉)
10 limsupval4.m . . 3 (𝜑𝑀 ∈ ℝ)
11 eqid 2724 . . 3 (𝑀[,)+∞) = (𝑀[,)+∞)
129, 10, 11limsupresicompt 44923 . 2 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
13 limsupval4.x . . . . 5 𝑥𝜑
14 limsupval4.b . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*)
1514xnegcld 13275 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒𝐵 ∈ ℝ*)
1613, 9, 10, 15liminfval3 44957 . . . 4 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)))
179, 10, 11limsupresicompt 44923 . . . . . 6 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)))
1814xnegnegd 44603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → -𝑒-𝑒𝐵 = 𝐵)
1913, 18mpteq2da 5236 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵) = (𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵))
2019fveq2d 6885 . . . . . 6 (𝜑 → (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2117, 20eqtrd 2764 . . . . 5 (𝜑 → (lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2221xnegeqd 44598 . . . 4 (𝜑 → -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒-𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2316, 22eqtrd 2764 . . 3 (𝜑 → (lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
2423xnegeqd 44598 . 2 (𝜑 → -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)) = -𝑒-𝑒(lim sup‘(𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞)) ↦ 𝐵)))
258, 12, 243eqtr4d 2774 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = -𝑒(lim inf‘(𝑥𝐴 ↦ -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  Vcvv 3466  cin 3939  cmpt 5221  cfv 6533  (class class class)co 7401  cr 11104  +∞cpnf 11241  *cxr 11243  -𝑒cxne 13085  [,)cico 13322  lim supclsp 15410  lim infclsi 44918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-xneg 13088  df-ico 13326  df-limsup 15411  df-liminf 44919
This theorem is referenced by:  limsupvaluz3  44965
  Copyright terms: Public domain W3C validator