![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfvaluz2 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfvaluz2.k | ⊢ Ⅎ𝑘𝜑 |
liminfvaluz2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminfvaluz2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminfvaluz2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
liminfvaluz2 | ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfvaluz2.k | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | liminfvaluz2.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | liminfvaluz2.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | liminfvaluz2.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
5 | 4 | rexrd 11288 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
6 | 1, 2, 3, 5 | liminfvaluz 45152 | . 2 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
7 | 4 | rexnegd 44481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -𝑒𝐵 = -𝐵) |
8 | 1, 7 | mpteq2da 5240 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ -𝑒𝐵) = (𝑘 ∈ 𝑍 ↦ -𝐵)) |
9 | 8 | fveq2d 6895 | . . 3 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = (lim sup‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
10 | 9 | xnegeqd 44791 | . 2 ⊢ (𝜑 → -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
11 | 6, 10 | eqtrd 2767 | 1 ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ↦ cmpt 5225 ‘cfv 6542 ℝcr 11131 -cneg 11469 ℤcz 12582 ℤ≥cuz 12846 -𝑒cxne 13115 lim supclsp 15440 lim infclsi 45111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-xneg 13118 df-ico 13356 df-limsup 15441 df-liminf 45112 |
This theorem is referenced by: liminfvaluz4 45159 |
Copyright terms: Public domain | W3C validator |