Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xrv Structured version   Visualization version   GIF version

Theorem monoord2xrv 42116
 Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xrv.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xrv.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xrv.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xrv (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2xrv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2xrv.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xrv.x . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
32xnegcld 12685 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹𝑘) ∈ ℝ*)
43fmpttd 6860 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)):(𝑀...𝑁)⟶ℝ*)
54ffvelrnda 6832 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ∈ ℝ*)
6 monoord2xrv.l . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
76ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8 fvoveq1 7162 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
9 fveq2 6649 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
108, 9breq12d 5046 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1110cbvralvw 3399 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
127, 11sylib 221 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1312r19.21bi 3176 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
14 fzp1elp1 12959 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1514adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
16 eluzelz 12245 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1817zcnd 12080 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
19 ax-1cn 10588 . . . . . . . . . . . 12 1 ∈ ℂ
20 npcan 10888 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2118, 19, 20sylancl 589 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2221oveq2d 7155 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2322adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2415, 23eleqtrd 2895 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
252ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
2625adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
27 fveq2 6649 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
2827eleq1d 2877 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
2928rspcv 3569 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
3024, 26, 29sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
31 fzssp1 12949 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3231, 22sseqtrid 3970 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3332sselda 3918 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
349eleq1d 2877 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
3534rspcv 3569 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
3633, 26, 35sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ*)
37 xleneg 12603 . . . . . . 7 (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3830, 36, 37syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3913, 38mpbid 235 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))
409xnegeqd 42067 . . . . . . 7 (𝑘 = 𝑛 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑛))
41 eqid 2801 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))
42 xnegex 12593 . . . . . . 7 -𝑒(𝐹𝑛) ∈ V
4340, 41, 42fvmpt 6749 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4433, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4527xnegeqd 42067 . . . . . . 7 (𝑘 = (𝑛 + 1) → -𝑒(𝐹𝑘) = -𝑒(𝐹‘(𝑛 + 1)))
46 xnegex 12593 . . . . . . 7 -𝑒(𝐹‘(𝑛 + 1)) ∈ V
4745, 41, 46fvmpt 6749 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4824, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4939, 44, 483brtr4d 5065 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)))
501, 5, 49monoordxrv 42114 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁))
51 eluzfz1 12913 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6649 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453xnegeqd 42067 . . . . 5 (𝑘 = 𝑀 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑀))
55 xnegex 12593 . . . . 5 -𝑒(𝐹𝑀) ∈ V
5654, 41, 55fvmpt 6749 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
58 eluzfz2 12914 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6649 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160xnegeqd 42067 . . . . 5 (𝑘 = 𝑁 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑁))
62 xnegex 12593 . . . . 5 -𝑒(𝐹𝑁) ∈ V
6361, 41, 62fvmpt 6749 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6550, 57, 643brtr3d 5064 . 2 (𝜑 → -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁))
6660eleq1d 2877 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑁) ∈ ℝ*))
6766rspcv 3569 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑁) ∈ ℝ*))
6859, 25, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ*)
6953eleq1d 2877 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
7069rspcv 3569 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
7152, 25, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ*)
72 xleneg 12603 . . 3 (((𝐹𝑁) ∈ ℝ* ∧ (𝐹𝑀) ∈ ℝ*) → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7368, 71, 72syl2anc 587 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7465, 73mpbird 260 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  1c1 10531   + caddc 10533  ℝ*cxr 10667   ≤ cle 10669   − cmin 10863  ℤcz 11973  ℤ≥cuz 12235  -𝑒cxne 12496  ...cfz 12889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-xneg 12499  df-fz 12890 This theorem is referenced by:  monoord2xr  42117
 Copyright terms: Public domain W3C validator