Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xrv Structured version   Visualization version   GIF version

Theorem monoord2xrv 43024
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xrv.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xrv.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xrv.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xrv (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2xrv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2xrv.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xrv.x . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
32xnegcld 13034 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹𝑘) ∈ ℝ*)
43fmpttd 6989 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)):(𝑀...𝑁)⟶ℝ*)
54ffvelrnda 6961 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ∈ ℝ*)
6 monoord2xrv.l . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
76ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8 fvoveq1 7298 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
9 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
108, 9breq12d 5087 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1110cbvralvw 3383 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
127, 11sylib 217 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1312r19.21bi 3134 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
14 fzp1elp1 13309 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1514adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
16 eluzelz 12592 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1817zcnd 12427 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
19 ax-1cn 10929 . . . . . . . . . . . 12 1 ∈ ℂ
20 npcan 11230 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2118, 19, 20sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2221oveq2d 7291 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2322adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2415, 23eleqtrd 2841 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
252ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
2625adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
27 fveq2 6774 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
2827eleq1d 2823 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
2928rspcv 3557 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
3024, 26, 29sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
31 fzssp1 13299 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3231, 22sseqtrid 3973 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3332sselda 3921 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
349eleq1d 2823 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
3534rspcv 3557 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
3633, 26, 35sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ*)
37 xleneg 12952 . . . . . . 7 (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3830, 36, 37syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3913, 38mpbid 231 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))
409xnegeqd 42977 . . . . . . 7 (𝑘 = 𝑛 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑛))
41 eqid 2738 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))
42 xnegex 12942 . . . . . . 7 -𝑒(𝐹𝑛) ∈ V
4340, 41, 42fvmpt 6875 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4433, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4527xnegeqd 42977 . . . . . . 7 (𝑘 = (𝑛 + 1) → -𝑒(𝐹𝑘) = -𝑒(𝐹‘(𝑛 + 1)))
46 xnegex 12942 . . . . . . 7 -𝑒(𝐹‘(𝑛 + 1)) ∈ V
4745, 41, 46fvmpt 6875 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4824, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4939, 44, 483brtr4d 5106 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)))
501, 5, 49monoordxrv 43022 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁))
51 eluzfz1 13263 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6774 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453xnegeqd 42977 . . . . 5 (𝑘 = 𝑀 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑀))
55 xnegex 12942 . . . . 5 -𝑒(𝐹𝑀) ∈ V
5654, 41, 55fvmpt 6875 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
58 eluzfz2 13264 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6774 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160xnegeqd 42977 . . . . 5 (𝑘 = 𝑁 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑁))
62 xnegex 12942 . . . . 5 -𝑒(𝐹𝑁) ∈ V
6361, 41, 62fvmpt 6875 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6550, 57, 643brtr3d 5105 . 2 (𝜑 → -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁))
6660eleq1d 2823 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑁) ∈ ℝ*))
6766rspcv 3557 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑁) ∈ ℝ*))
6859, 25, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ*)
6953eleq1d 2823 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
7069rspcv 3557 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
7152, 25, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ*)
72 xleneg 12952 . . 3 (((𝐹𝑁) ∈ ℝ* ∧ (𝐹𝑀) ∈ ℝ*) → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7368, 71, 72syl2anc 584 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7465, 73mpbird 256 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874  *cxr 11008  cle 11010  cmin 11205  cz 12319  cuz 12582  -𝑒cxne 12845  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-xneg 12848  df-fz 13240
This theorem is referenced by:  monoord2xr  43025
  Copyright terms: Public domain W3C validator