| Step | Hyp | Ref
| Expression |
| 1 | | monoord2xrv.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | monoord2xrv.x |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈
ℝ*) |
| 3 | 2 | xnegcld 13342 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹‘𝑘) ∈
ℝ*) |
| 4 | 3 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)):(𝑀...𝑁)⟶ℝ*) |
| 5 | 4 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) ∈
ℝ*) |
| 6 | | monoord2xrv.l |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| 7 | 6 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| 8 | | fvoveq1 7454 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
| 9 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 10 | 8, 9 | breq12d 5156 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛))) |
| 11 | 10 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 12 | 7, 11 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 13 | 12 | r19.21bi 3251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛)) |
| 14 | | fzp1elp1 13617 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
| 15 | 14 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1))) |
| 16 | | eluzelz 12888 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 18 | 17 | zcnd 12723 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 19 | | ax-1cn 11213 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 20 | | npcan 11517 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 21 | 18, 19, 20 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 22 | 21 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 23 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 24 | 15, 23 | eleqtrd 2843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 25 | 2 | ralrimiva 3146 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈
ℝ*) |
| 26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈
ℝ*) |
| 27 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 28 | 27 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈
ℝ*)) |
| 29 | 28 | rspcv 3618 |
. . . . . . . 8
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈
ℝ*)) |
| 30 | 24, 26, 29 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈
ℝ*) |
| 31 | | fzssp1 13607 |
. . . . . . . . . 10
⊢ (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1)) |
| 32 | 31, 22 | sseqtrid 4026 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
| 33 | 32 | sselda 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁)) |
| 34 | 9 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑛) ∈
ℝ*)) |
| 35 | 34 | rspcv 3618 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑛) ∈
ℝ*)) |
| 36 | 33, 26, 35 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) ∈
ℝ*) |
| 37 | | xleneg 13260 |
. . . . . . 7
⊢ (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧
(𝐹‘𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))) |
| 38 | 30, 36, 37 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹‘𝑛) ↔ -𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))) |
| 39 | 13, 38 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) →
-𝑒(𝐹‘𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))) |
| 40 | 9 | xnegeqd 45448 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑛)) |
| 41 | | eqid 2737 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘)) |
| 42 | | xnegex 13250 |
. . . . . . 7
⊢
-𝑒(𝐹‘𝑛) ∈ V |
| 43 | 40, 41, 42 | fvmpt 7016 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) = -𝑒(𝐹‘𝑛)) |
| 44 | 33, 43 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) = -𝑒(𝐹‘𝑛)) |
| 45 | 27 | xnegeqd 45448 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘(𝑛 + 1))) |
| 46 | | xnegex 13250 |
. . . . . . 7
⊢
-𝑒(𝐹‘(𝑛 + 1)) ∈ V |
| 47 | 45, 41, 46 | fvmpt 7016 |
. . . . . 6
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1))) |
| 48 | 24, 47 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1))) |
| 49 | 39, 44, 48 | 3brtr4d 5175 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘(𝑛 + 1))) |
| 50 | 1, 5, 49 | monoordxrv 45492 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁)) |
| 51 | | eluzfz1 13571 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 52 | 1, 51 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 53 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 54 | 53 | xnegeqd 45448 |
. . . . 5
⊢ (𝑘 = 𝑀 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑀)) |
| 55 | | xnegex 13250 |
. . . . 5
⊢
-𝑒(𝐹‘𝑀) ∈ V |
| 56 | 54, 41, 55 | fvmpt 7016 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) = -𝑒(𝐹‘𝑀)) |
| 57 | 52, 56 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑀) = -𝑒(𝐹‘𝑀)) |
| 58 | | eluzfz2 13572 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 59 | 1, 58 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 60 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
| 61 | 60 | xnegeqd 45448 |
. . . . 5
⊢ (𝑘 = 𝑁 → -𝑒(𝐹‘𝑘) = -𝑒(𝐹‘𝑁)) |
| 62 | | xnegex 13250 |
. . . . 5
⊢
-𝑒(𝐹‘𝑁) ∈ V |
| 63 | 61, 41, 62 | fvmpt 7016 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁) = -𝑒(𝐹‘𝑁)) |
| 64 | 59, 63 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹‘𝑘))‘𝑁) = -𝑒(𝐹‘𝑁)) |
| 65 | 50, 57, 64 | 3brtr3d 5174 |
. 2
⊢ (𝜑 →
-𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁)) |
| 66 | 60 | eleq1d 2826 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑁) ∈
ℝ*)) |
| 67 | 66 | rspcv 3618 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑁) ∈
ℝ*)) |
| 68 | 59, 25, 67 | sylc 65 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℝ*) |
| 69 | 53 | eleq1d 2826 |
. . . . 5
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ* ↔ (𝐹‘𝑀) ∈
ℝ*)) |
| 70 | 69 | rspcv 3618 |
. . . 4
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ* → (𝐹‘𝑀) ∈
ℝ*)) |
| 71 | 52, 25, 70 | sylc 65 |
. . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈
ℝ*) |
| 72 | | xleneg 13260 |
. . 3
⊢ (((𝐹‘𝑁) ∈ ℝ* ∧ (𝐹‘𝑀) ∈ ℝ*) → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁))) |
| 73 | 68, 71, 72 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐹‘𝑁) ≤ (𝐹‘𝑀) ↔ -𝑒(𝐹‘𝑀) ≤ -𝑒(𝐹‘𝑁))) |
| 74 | 65, 73 | mpbird 257 |
1
⊢ (𝜑 → (𝐹‘𝑁) ≤ (𝐹‘𝑀)) |