Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xrv Structured version   Visualization version   GIF version

Theorem monoord2xrv 45399
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xrv.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xrv.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xrv.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xrv (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2xrv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2xrv.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xrv.x . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
32xnegcld 13362 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹𝑘) ∈ ℝ*)
43fmpttd 7149 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)):(𝑀...𝑁)⟶ℝ*)
54ffvelcdmda 7118 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ∈ ℝ*)
6 monoord2xrv.l . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
76ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8 fvoveq1 7471 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
9 fveq2 6920 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
108, 9breq12d 5179 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1110cbvralvw 3243 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
127, 11sylib 218 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1312r19.21bi 3257 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
14 fzp1elp1 13637 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1514adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
16 eluzelz 12913 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1817zcnd 12748 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
19 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
20 npcan 11545 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2118, 19, 20sylancl 585 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2221oveq2d 7464 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2415, 23eleqtrd 2846 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
252ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
2625adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
27 fveq2 6920 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
2827eleq1d 2829 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
2928rspcv 3631 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
3024, 26, 29sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
31 fzssp1 13627 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3231, 22sseqtrid 4061 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3332sselda 4008 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
349eleq1d 2829 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
3534rspcv 3631 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
3633, 26, 35sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ*)
37 xleneg 13280 . . . . . . 7 (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3830, 36, 37syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3913, 38mpbid 232 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))
409xnegeqd 45352 . . . . . . 7 (𝑘 = 𝑛 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑛))
41 eqid 2740 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))
42 xnegex 13270 . . . . . . 7 -𝑒(𝐹𝑛) ∈ V
4340, 41, 42fvmpt 7029 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4433, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4527xnegeqd 45352 . . . . . . 7 (𝑘 = (𝑛 + 1) → -𝑒(𝐹𝑘) = -𝑒(𝐹‘(𝑛 + 1)))
46 xnegex 13270 . . . . . . 7 -𝑒(𝐹‘(𝑛 + 1)) ∈ V
4745, 41, 46fvmpt 7029 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4824, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4939, 44, 483brtr4d 5198 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)))
501, 5, 49monoordxrv 45397 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁))
51 eluzfz1 13591 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6920 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453xnegeqd 45352 . . . . 5 (𝑘 = 𝑀 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑀))
55 xnegex 13270 . . . . 5 -𝑒(𝐹𝑀) ∈ V
5654, 41, 55fvmpt 7029 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
58 eluzfz2 13592 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6920 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160xnegeqd 45352 . . . . 5 (𝑘 = 𝑁 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑁))
62 xnegex 13270 . . . . 5 -𝑒(𝐹𝑁) ∈ V
6361, 41, 62fvmpt 7029 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6550, 57, 643brtr3d 5197 . 2 (𝜑 → -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁))
6660eleq1d 2829 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑁) ∈ ℝ*))
6766rspcv 3631 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑁) ∈ ℝ*))
6859, 25, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ*)
6953eleq1d 2829 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
7069rspcv 3631 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
7152, 25, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ*)
72 xleneg 13280 . . 3 (((𝐹𝑁) ∈ ℝ* ∧ (𝐹𝑀) ∈ ℝ*) → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7368, 71, 72syl2anc 583 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7465, 73mpbird 257 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  *cxr 11323  cle 11325  cmin 11520  cz 12639  cuz 12903  -𝑒cxne 13172  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-xneg 13175  df-fz 13568
This theorem is referenced by:  monoord2xr  45400
  Copyright terms: Public domain W3C validator