Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoord2xrv Structured version   Visualization version   GIF version

Theorem monoord2xrv 45479
Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoord2xrv.n (𝜑𝑁 ∈ (ℤ𝑀))
monoord2xrv.x ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoord2xrv.l ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
Assertion
Ref Expression
monoord2xrv (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord2xrv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 monoord2xrv.n . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 monoord2xrv.x . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
32xnegcld 13260 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝑒(𝐹𝑘) ∈ ℝ*)
43fmpttd 7087 . . . . 5 (𝜑 → (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)):(𝑀...𝑁)⟶ℝ*)
54ffvelcdmda 7056 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ∈ ℝ*)
6 monoord2xrv.l . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
76ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8 fvoveq1 7410 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
9 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
108, 9breq12d 5120 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛)))
1110cbvralvw 3215 . . . . . . . 8 (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
127, 11sylib 218 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑀...(𝑁 − 1))(𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
1312r19.21bi 3229 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛))
14 fzp1elp1 13538 . . . . . . . . . 10 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
1514adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...((𝑁 − 1) + 1)))
16 eluzelz 12803 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
171, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1817zcnd 12639 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
19 ax-1cn 11126 . . . . . . . . . . . 12 1 ∈ ℂ
20 npcan 11430 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2118, 19, 20sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2221oveq2d 7403 . . . . . . . . . 10 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2322adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
2415, 23eleqtrd 2830 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝑛 + 1) ∈ (𝑀...𝑁))
252ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
2625adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
27 fveq2 6858 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
2827eleq1d 2813 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
2928rspcv 3584 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
3024, 26, 29sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
31 fzssp1 13528 . . . . . . . . . 10 (𝑀...(𝑁 − 1)) ⊆ (𝑀...((𝑁 − 1) + 1))
3231, 22sseqtrid 3989 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
3332sselda 3946 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (𝑀...𝑁))
349eleq1d 2813 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
3534rspcv 3584 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
3633, 26, 35sylc 65 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) ∈ ℝ*)
37 xleneg 13178 . . . . . . 7 (((𝐹‘(𝑛 + 1)) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ*) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3830, 36, 37syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝐹‘(𝑛 + 1)) ≤ (𝐹𝑛) ↔ -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1))))
3913, 38mpbid 232 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → -𝑒(𝐹𝑛) ≤ -𝑒(𝐹‘(𝑛 + 1)))
409xnegeqd 45433 . . . . . . 7 (𝑘 = 𝑛 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑛))
41 eqid 2729 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘)) = (𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))
42 xnegex 13168 . . . . . . 7 -𝑒(𝐹𝑛) ∈ V
4340, 41, 42fvmpt 6968 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4433, 43syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) = -𝑒(𝐹𝑛))
4527xnegeqd 45433 . . . . . . 7 (𝑘 = (𝑛 + 1) → -𝑒(𝐹𝑘) = -𝑒(𝐹‘(𝑛 + 1)))
46 xnegex 13168 . . . . . . 7 -𝑒(𝐹‘(𝑛 + 1)) ∈ V
4745, 41, 46fvmpt 6968 . . . . . 6 ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4824, 47syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)) = -𝑒(𝐹‘(𝑛 + 1)))
4939, 44, 483brtr4d 5139 . . . 4 ((𝜑𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑛) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘(𝑛 + 1)))
501, 5, 49monoordxrv 45477 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) ≤ ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁))
51 eluzfz1 13492 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
521, 51syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
53 fveq2 6858 . . . . . 6 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
5453xnegeqd 45433 . . . . 5 (𝑘 = 𝑀 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑀))
55 xnegex 13168 . . . . 5 -𝑒(𝐹𝑀) ∈ V
5654, 41, 55fvmpt 6968 . . . 4 (𝑀 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
5752, 56syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑀) = -𝑒(𝐹𝑀))
58 eluzfz2 13493 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
591, 58syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
60 fveq2 6858 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
6160xnegeqd 45433 . . . . 5 (𝑘 = 𝑁 → -𝑒(𝐹𝑘) = -𝑒(𝐹𝑁))
62 xnegex 13168 . . . . 5 -𝑒(𝐹𝑁) ∈ V
6361, 41, 62fvmpt 6968 . . . 4 (𝑁 ∈ (𝑀...𝑁) → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6459, 63syl 17 . . 3 (𝜑 → ((𝑘 ∈ (𝑀...𝑁) ↦ -𝑒(𝐹𝑘))‘𝑁) = -𝑒(𝐹𝑁))
6550, 57, 643brtr3d 5138 . 2 (𝜑 → -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁))
6660eleq1d 2813 . . . . 5 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑁) ∈ ℝ*))
6766rspcv 3584 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑁) ∈ ℝ*))
6859, 25, 67sylc 65 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ*)
6953eleq1d 2813 . . . . 5 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
7069rspcv 3584 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
7152, 25, 70sylc 65 . . 3 (𝜑 → (𝐹𝑀) ∈ ℝ*)
72 xleneg 13178 . . 3 (((𝐹𝑁) ∈ ℝ* ∧ (𝐹𝑀) ∈ ℝ*) → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7368, 71, 72syl2anc 584 . 2 (𝜑 → ((𝐹𝑁) ≤ (𝐹𝑀) ↔ -𝑒(𝐹𝑀) ≤ -𝑒(𝐹𝑁)))
7465, 73mpbird 257 1 (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071  *cxr 11207  cle 11209  cmin 11405  cz 12529  cuz 12793  -𝑒cxne 13069  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-xneg 13072  df-fz 13469
This theorem is referenced by:  monoord2xr  45480
  Copyright terms: Public domain W3C validator