Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnuni Structured version   Visualization version   GIF version

Theorem nnuni 35689
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
nnuni (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7934 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2 unieq 4942 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 uni0 4959 . . . . 5 ∅ = ∅
42, 3eqtrdi 2796 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
5 peano1 7927 . . . 4 ∅ ∈ ω
64, 5eqeltrdi 2852 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
7 nnord 7911 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
8 ordunisuc 7868 . . . . . . 7 (Ord 𝑥 suc 𝑥 = 𝑥)
97, 8syl 17 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
10 id 22 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ ω)
119, 10eqeltrd 2844 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
12 unieq 4942 . . . . . 6 (𝐴 = suc 𝑥 𝐴 = suc 𝑥)
1312eleq1d 2829 . . . . 5 (𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1411, 13syl5ibrcom 247 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 𝐴 ∈ ω))
1514rexlimiv 3154 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 𝐴 ∈ ω)
166, 15jaoi 856 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
171, 16syl 17 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  wrex 3076  c0 4352   cuni 4931  Ord word 6394  suc csuc 6397  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator