Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnuni | Structured version Visualization version GIF version |
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
nnuni | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 7716 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
2 | unieq 4847 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
3 | uni0 4866 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∅) |
5 | peano1 7710 | . . . 4 ⊢ ∅ ∈ ω | |
6 | 4, 5 | eqeltrdi 2847 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
7 | nnord 7695 | . . . . . . 7 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
8 | ordunisuc 7654 | . . . . . . 7 ⊢ (Ord 𝑥 → ∪ suc 𝑥 = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥) |
10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ω) | |
11 | 9, 10 | eqeltrd 2839 | . . . . 5 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω) |
12 | unieq 4847 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥) | |
13 | 12 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω)) |
14 | 11, 13 | syl5ibrcom 246 | . . . 4 ⊢ (𝑥 ∈ ω → (𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω)) |
15 | 14 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω) |
16 | 6, 15 | jaoi 853 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
17 | 1, 16 | syl 17 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∅c0 4253 ∪ cuni 4836 Ord word 6250 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |