Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnuni Structured version   Visualization version   GIF version

Theorem nnuni 35769
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
nnuni (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7824 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2 unieq 4870 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 uni0 4887 . . . . 5 ∅ = ∅
42, 3eqtrdi 2782 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
5 peano1 7819 . . . 4 ∅ ∈ ω
64, 5eqeltrdi 2839 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
7 nnord 7804 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
8 ordunisuc 7762 . . . . . . 7 (Ord 𝑥 suc 𝑥 = 𝑥)
97, 8syl 17 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
10 id 22 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ ω)
119, 10eqeltrd 2831 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
12 unieq 4870 . . . . . 6 (𝐴 = suc 𝑥 𝐴 = suc 𝑥)
1312eleq1d 2816 . . . . 5 (𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1411, 13syl5ibrcom 247 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 𝐴 ∈ ω))
1514rexlimiv 3126 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 𝐴 ∈ ω)
166, 15jaoi 857 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
171, 16syl 17 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  wrex 3056  c0 4283   cuni 4859  Ord word 6305  suc csuc 6308  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-om 7797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator