Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnuni Structured version   Visualization version   GIF version

Theorem nnuni 33405
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
nnuni (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7670 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2 unieq 4827 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 uni0 4846 . . . . 5 ∅ = ∅
42, 3eqtrdi 2794 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
5 peano1 7664 . . . 4 ∅ ∈ ω
64, 5eqeltrdi 2846 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
7 nnord 7649 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
8 ordunisuc 7608 . . . . . . 7 (Ord 𝑥 suc 𝑥 = 𝑥)
97, 8syl 17 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
10 id 22 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ ω)
119, 10eqeltrd 2838 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
12 unieq 4827 . . . . . 6 (𝐴 = suc 𝑥 𝐴 = suc 𝑥)
1312eleq1d 2822 . . . . 5 (𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1411, 13syl5ibrcom 250 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 𝐴 ∈ ω))
1514rexlimiv 3196 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 𝐴 ∈ ω)
166, 15jaoi 857 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
171, 16syl 17 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1543  wcel 2110  wrex 3059  c0 4234   cuni 4816  Ord word 6209  suc csuc 6212  ωcom 7641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5189  ax-nul 5196  ax-pr 5319  ax-un 7520
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2940  df-ral 3063  df-rex 3064  df-rab 3067  df-v 3407  df-dif 3866  df-un 3868  df-in 3870  df-ss 3880  df-pss 3882  df-nul 4235  df-if 4437  df-pw 4512  df-sn 4539  df-pr 4541  df-tp 4543  df-op 4545  df-uni 4817  df-br 5051  df-opab 5113  df-tr 5159  df-eprel 5457  df-po 5465  df-so 5466  df-fr 5506  df-we 5508  df-ord 6213  df-on 6214  df-lim 6215  df-suc 6216  df-om 7642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator