| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnuni | Structured version Visualization version GIF version | ||
| Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| nnuni | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0suc 7830 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
| 2 | unieq 4869 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
| 3 | uni0 4886 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 4 | 2, 3 | eqtrdi 2784 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∅) |
| 5 | peano1 7825 | . . . 4 ⊢ ∅ ∈ ω | |
| 6 | 4, 5 | eqeltrdi 2841 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
| 7 | nnord 7810 | . . . . . . 7 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
| 8 | ordunisuc 7768 | . . . . . . 7 ⊢ (Ord 𝑥 → ∪ suc 𝑥 = 𝑥) | |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥) |
| 10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ω) | |
| 11 | 9, 10 | eqeltrd 2833 | . . . . 5 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω) |
| 12 | unieq 4869 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥) | |
| 13 | 12 | eleq1d 2818 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω)) |
| 14 | 11, 13 | syl5ibrcom 247 | . . . 4 ⊢ (𝑥 ∈ ω → (𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω)) |
| 15 | 14 | rexlimiv 3127 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω) |
| 16 | 6, 15 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
| 17 | 1, 16 | syl 17 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∅c0 4282 ∪ cuni 4858 Ord word 6310 suc csuc 6313 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |