![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnuni | Structured version Visualization version GIF version |
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
nnuni | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 7890 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
2 | unieq 4920 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
3 | uni0 4940 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2786 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∅) |
5 | peano1 7883 | . . . 4 ⊢ ∅ ∈ ω | |
6 | 4, 5 | eqeltrdi 2839 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
7 | nnord 7867 | . . . . . . 7 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
8 | ordunisuc 7824 | . . . . . . 7 ⊢ (Ord 𝑥 → ∪ suc 𝑥 = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥) |
10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ω) | |
11 | 9, 10 | eqeltrd 2831 | . . . . 5 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω) |
12 | unieq 4920 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥) | |
13 | 12 | eleq1d 2816 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω)) |
14 | 11, 13 | syl5ibrcom 246 | . . . 4 ⊢ (𝑥 ∈ ω → (𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω)) |
15 | 14 | rexlimiv 3146 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω) |
16 | 6, 15 | jaoi 853 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
17 | 1, 16 | syl 17 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ∅c0 4323 ∪ cuni 4909 Ord word 6364 suc csuc 6367 ωcom 7859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-om 7860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |