Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnuni Structured version   Visualization version   GIF version

Theorem nnuni 35792
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
nnuni (𝐴 ∈ ω → 𝐴 ∈ ω)

Proof of Theorem nnuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nn0suc 7830 . 2 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2 unieq 4869 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 uni0 4886 . . . . 5 ∅ = ∅
42, 3eqtrdi 2784 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
5 peano1 7825 . . . 4 ∅ ∈ ω
64, 5eqeltrdi 2841 . . 3 (𝐴 = ∅ → 𝐴 ∈ ω)
7 nnord 7810 . . . . . . 7 (𝑥 ∈ ω → Ord 𝑥)
8 ordunisuc 7768 . . . . . . 7 (Ord 𝑥 suc 𝑥 = 𝑥)
97, 8syl 17 . . . . . 6 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
10 id 22 . . . . . 6 (𝑥 ∈ ω → 𝑥 ∈ ω)
119, 10eqeltrd 2833 . . . . 5 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
12 unieq 4869 . . . . . 6 (𝐴 = suc 𝑥 𝐴 = suc 𝑥)
1312eleq1d 2818 . . . . 5 (𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1411, 13syl5ibrcom 247 . . . 4 (𝑥 ∈ ω → (𝐴 = suc 𝑥 𝐴 ∈ ω))
1514rexlimiv 3127 . . 3 (∃𝑥 ∈ ω 𝐴 = suc 𝑥 𝐴 ∈ ω)
166, 15jaoi 857 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
171, 16syl 17 1 (𝐴 ∈ ω → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2113  wrex 3057  c0 4282   cuni 4858  Ord word 6310  suc csuc 6313  ωcom 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-om 7803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator