Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnuni | Structured version Visualization version GIF version |
Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
nnuni | ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0suc 7742 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | |
2 | unieq 4850 | . . . . 5 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
3 | uni0 4869 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∅) |
5 | peano1 7735 | . . . 4 ⊢ ∅ ∈ ω | |
6 | 4, 5 | eqeltrdi 2847 | . . 3 ⊢ (𝐴 = ∅ → ∪ 𝐴 ∈ ω) |
7 | nnord 7720 | . . . . . . 7 ⊢ (𝑥 ∈ ω → Ord 𝑥) | |
8 | ordunisuc 7679 | . . . . . . 7 ⊢ (Ord 𝑥 → ∪ suc 𝑥 = 𝑥) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥) |
10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ω) | |
11 | 9, 10 | eqeltrd 2839 | . . . . 5 ⊢ (𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω) |
12 | unieq 4850 | . . . . . 6 ⊢ (𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥) | |
13 | 12 | eleq1d 2823 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω)) |
14 | 11, 13 | syl5ibrcom 246 | . . . 4 ⊢ (𝑥 ∈ ω → (𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω)) |
15 | 14 | rexlimiv 3209 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω) |
16 | 6, 15 | jaoi 854 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → ∪ 𝐴 ∈ ω) |
17 | 1, 16 | syl 17 | 1 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∅c0 4256 ∪ cuni 4839 Ord word 6265 suc csuc 6268 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |